Hierarchical convolutional features for visual tracking

Chao Ma, Jia Bin Huang, Xiaokang Yang, Ming Hsuan Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1627 Citations (Scopus)


Visual object tracking is challenging as target objects often undergo significant appearance changes caused by deformation, abrupt motion, background clutter and occlusion. In this paper, we exploit features extracted from deep convolutional neural networks trained on object recognition datasets to improve tracking accuracy and robustness. The outputs of the last convolutional layers encode the semantic information of targets and such representations are robust to significant appearance variations. However, their spatial resolution is too coarse to precisely localize targets. In contrast, earlier convolutional layers provide more precise localization but are less invariant to appearance changes. We interpret the hierarchies of convolutional layers as a nonlinear counterpart of an image pyramid representation and exploit these multiple levels of abstraction for visual tracking. Specifically, we adaptively learn correlation filters on each convolutional layer to encode the target appearance. We hierarchically infer the maximum response of each layer to locate targets. Extensive experimental results on a largescale benchmark dataset show that the proposed algorithm performs favorably against state-of-the-art methods.

Original languageEnglish
Title of host publication2015 International Conference on Computer Vision, ICCV 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages9
ISBN (Electronic)9781467383912
Publication statusPublished - 2015 Feb 17
Event15th IEEE International Conference on Computer Vision, ICCV 2015 - Santiago, Chile
Duration: 2015 Dec 112015 Dec 18

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2015 International Conference on Computer Vision, ICCV 2015
ISSN (Print)1550-5499


Other15th IEEE International Conference on Computer Vision, ICCV 2015

Bibliographical note

Publisher Copyright:
© 2015 IEEE.

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition


Dive into the research topics of 'Hierarchical convolutional features for visual tracking'. Together they form a unique fingerprint.

Cite this