Hierarchical Nanoflowers on Nanograss Structure for a Non-wettable Surface and a SERS Substrate

Jun Young Lee, Jaehyun Han, Jihye Lee, Seungmuk Ji, Jong Souk Yeo

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)


Hierarchical nanostructures of CuO nanoflowers on nanograss were investigated for self-cleaning and surface plasmonic applications. We achieved the hierarchical nanostructures using one-step oxidation process by controlling the formation of flower-like nanoscale residues (nanoflowers) on CuO nanograss. While the nanograss structure of CuO has a sufficient roughness for superhydrophobic characteristics, the additional hierarchy of nanoflowers on nanograss leads to a semi-reentrant structure with a high repellency even for a very small droplet (10 nL) of low surface tension liquid such as 25 % ethanol (~35 mN/m), thus providing non-wettable and self-cleaning properties. Furthermore, the CuO hierarchical nanostructure serves as a substrate for surface-enhanced Raman spectroscopy (SERS). Both of the CuO nanograss and nanoflower provide many nanoscale gaps that act as hot-spots for surface-enhanced Raman signal of 4-mercaptopyridine (4-Mpy), thus enabling a non-destructive detection in a short analysis time with relatively simple preparation of sample. Especially, the CuO nanoflower has larger number of hot-spots at the nanogaps from floral leaf-like structures, thus leading to three times higher Raman intensity than the CuO nanograss. These multifunctional results potentially provide a path toward cost-effective fabrication of a non-wettable surface for self-maintenance applications and a SERS substrate for sensing applications.

Original languageEnglish
Article number505
Pages (from-to)1-9
Number of pages9
JournalNanoscale Research Letters
Issue number1
Publication statusPublished - 2015 Dec 1

Bibliographical note

Funding Information:
This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the “IT Consilience Creative Program” (IITP-2015-R0346-15-1008) supervised by the IITP (Institute for Information & Communications Technology Promotion).

Publisher Copyright:
© 2015, Lee et al.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics


Dive into the research topics of 'Hierarchical Nanoflowers on Nanograss Structure for a Non-wettable Surface and a SERS Substrate'. Together they form a unique fingerprint.

Cite this