High pressure vaporization of burning droplet with flash vapor-liquid equilibrium calculation

Hyunho Shin, Kang won Lee, Woong sub Yoon, Jongwon Chae

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


Unsteady burning of n-pentane liquid droplet quiescent in high-pressure oxidizing air is investigated with emphasis placed on rigorous calculation of droplet vaporization. Fully coupled conservation equations in conjunction with global reaction kinetics for chemistry are preconditioned and time-integrated by means of a dual time-stepping technique with pertinent boundary conditions. Properties of equilibrated vapor-liquid interface are evaluated by the method of Soave-Redlich-Kwong equation of state along with consistent set of mixing rules for multi-component mixtures. Envelope flame propagates persistently with gradually increasing peak flame temperature as longas droplet remains in liquid phase. At all pressures, ignition is immediate and resultant steep temperature gradient at interfacial boundary aids in the activition of vaporization, but its extent decreasesat later times as the droplet surface temperature arrives at its pseudo wet-bulb value. Ignition is immediate with continuous initial temperature distribution in the vicinity of intefacial boundary and renders an impulsive rise in droplet surface temperature. Other representative pressure effects on evolving droplet combustion are also presented and discussed.

Original languageEnglish
Pages (from-to)465-474
Number of pages10
JournalInternational Communications in Heat and Mass Transfer
Issue number4
Publication statusPublished - 2003 May

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics
  • Chemical Engineering(all)
  • Condensed Matter Physics


Dive into the research topics of 'High pressure vaporization of burning droplet with flash vapor-liquid equilibrium calculation'. Together they form a unique fingerprint.

Cite this