High-purity hydrogen production via a water-gas-shift reaction in a palladium-copper catalytic membrane reactor integrated with pressure swing adsorption

Gina Bang, Dong Kyu Moon, Jun Ho Kang, Yun Jin Han, Kyung Min Kim, Chang Ha Lee

Research output: Contribution to journalArticlepeer-review

Abstract

A Pd-Cu catalytic membrane reactor (CMR) integrated with pressure swing adsorption (PSA) was developed to produce fuel cell grade hydrogen from syngas. The enhanced water-gas-shift reaction in the Pd-Cu CMR packed with a high-temperature shift catalyst was experimentally conducted by using a carbon monoxide (CO)/hydrogen (H2)/carbon dioxide (CO2) mixture (65:30:5 vol%) at 360–380 °C, 6–10 bar, and a steam/carbon (s/c) ratio of 1–5. Since H2 was used as the sweeping gas, pure H2 could be directly obtained from the permeate side. The temperature inside the packed catalysts was well distributed in the developed CMR module without any specific hotspots during the reaction and separation. The CO conversion in the CMR increased from 85.4% to 94.8% with the recovery of 53.4% to 56.1% when the s/c ratio increased from 1 to 5. The conversion rate was enhanced by 10.0–16.7% compared with the fixed catalytic bed reactor. When four-bed PSA using activated carbon and zeolite was integrated to recover more H2 from the retentate flow, the recovery of H2 was additionally improved by 31.2–35.7%. The integrated Pd-Cu CMR with four-bed PSA could produce H2 of over 99.9991% with a recovery of 91.37% and 8.67 ppm CO. For H2 produced with less than 0.2 ppm CO, the recovery was reduced to 85.99% with 0.15 ppm CO. The feasibility of CMR with PSA to enhance CO conversion and H2 recovery is suggested for the production of fuel cell grade H2 for a proton-exchange membrane fuel cell (ISO 14687).

Original languageEnglish
Article number128473
JournalChemical Engineering Journal
Volume411
DOIs
Publication statusPublished - 2021 May 1

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) and funded by the Ministry of Science and ICT (2020K1A4A7A02095371).

Publisher Copyright:
© 2021 Elsevier B.V.

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'High-purity hydrogen production via a water-gas-shift reaction in a palladium-copper catalytic membrane reactor integrated with pressure swing adsorption'. Together they form a unique fingerprint.

Cite this