High-temperature degradation of one-dimensional metallodielectric (W/SiO2) photonic crystal as selective thermal emitter for thermophotovoltaic system

Jin Hwan Kim, Sang Min Jung, Moo Whan Shin

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

In this paper, thermal stability of a one-dimensional metallodielectric photonic crystal (1D MDPhC) structure based on W and SiO2 for thermophotovoltaic systems is reported. The thermal degradation mechanism of the structure, in its operating temperature range, is thoroughly investigated by using energy dispersive spectroscopy (EDS) with transmission electron microscope (TEM) and depth-profiling X-ray photoelectron spectroscopy (XPS). It is found that the structure is entirely destroyed under 1400 K by an inter-diffusion process forming a mixture of W and SiO2 without measurable oxidization of W. But, long-term annealing results in oxidization of W layer even at a lower temperature of 1300 K. During the long-term annealing, oxygen atoms in outside atmosphere are believed to cause oxidation of the upper W layer below the top SiO2 layer. Additionally, delaminated spots are observed over the surface. These thermal behaviors are potential clues to prevent or minimize thermal degradation of the multilayer structure under high temperature operation.

Original languageEnglish
Pages (from-to)45-51
Number of pages7
JournalOptical Materials
Volume72
DOIs
Publication statusPublished - 2017 Oct

Bibliographical note

Funding Information:
This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the “ICT Consilience Creative Program” (IITP-2017-2017-0-01015) supervised by the IITP (Institute for Information & Communications Technology Promotion).

Publisher Copyright:
© 2017 Elsevier B.V.

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Computer Science(all)
  • Atomic and Molecular Physics, and Optics
  • Spectroscopy
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'High-temperature degradation of one-dimensional metallodielectric (W/SiO2) photonic crystal as selective thermal emitter for thermophotovoltaic system'. Together they form a unique fingerprint.

Cite this