Abstract
Simulated waste-derived synthesis gas has been tested for hydrogen production through water gas shift (WGS) reaction in the temperature range of 350-550 C over chromium free Fe/Al/Cu oxide based catalysts. The CuO loading amount was optimized to get highly active Fe/Al/Cu oxide based catalysts for the high temperature WGS. Despite the high CO content in the feed gas (38.2 % dry basis), 15 % CuO catalyst exhibited the highest CO conversion (86 %) and 100 % selectivity to CO2 at a very high gas hourly space velocity (GHSV) of 40,057 h-1 due to easier reducibility, the synergy effect of copper and aluminum, and the stability of the active phase (magnetite: Fe 3O4). Graphical Abstract: [Figure not available: see fulltext.]
Original language | English |
---|---|
Pages (from-to) | 438-444 |
Number of pages | 7 |
Journal | Catalysis Letters |
Volume | 143 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2013 May |
Bibliographical note
Funding Information:Acknowledgments This work was supported by the New & Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (2011T100200273). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0002521).
All Science Journal Classification (ASJC) codes
- Catalysis
- Chemistry(all)