Highly transparent and stretchable field-effect transistor sensors using graphene-nanowire hybrid nanostructures

Joohee Kim, Mi Sun Lee, Sangbin Jeon, Minji Kim, Sungwon Kim, Kukjoo Kim, Franklin Bien, Sung You Hong, Jang-Ung Park

Research output: Contribution to journalArticle

95 Citations (Scopus)

Abstract

Transparent and stretchable electronics with remarkable bendability, conformability, and lightness are the key attributes for sensing or wearable devices. Transparent and stretchable field-effect transistor sensors using graphene-metal nanowire hybrid nanostructures have high mobility (≈3000 cm2 V-1 s-1) with low contact resistance, and they are transferrable onto a variety of substrates. The integration of these sensors for RLC circuits enables wireless monitoring.

Original languageEnglish
Pages (from-to)3292-3297
Number of pages6
JournalAdvanced Materials
Volume27
Issue number21
DOIs
Publication statusPublished - 2015 Jun 1

Fingerprint

Graphite
Field effect transistors
Graphene
Nanowires
Nanostructures
Sensors
Contact resistance
Formability
Electronic equipment
Metals
Networks (circuits)
Monitoring
Substrates

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

Kim, Joohee ; Lee, Mi Sun ; Jeon, Sangbin ; Kim, Minji ; Kim, Sungwon ; Kim, Kukjoo ; Bien, Franklin ; Hong, Sung You ; Park, Jang-Ung. / Highly transparent and stretchable field-effect transistor sensors using graphene-nanowire hybrid nanostructures. In: Advanced Materials. 2015 ; Vol. 27, No. 21. pp. 3292-3297.
@article{fcb6baeb5a61423da0a4fe49b4b12af2,
title = "Highly transparent and stretchable field-effect transistor sensors using graphene-nanowire hybrid nanostructures",
abstract = "Transparent and stretchable electronics with remarkable bendability, conformability, and lightness are the key attributes for sensing or wearable devices. Transparent and stretchable field-effect transistor sensors using graphene-metal nanowire hybrid nanostructures have high mobility (≈3000 cm2 V-1 s-1) with low contact resistance, and they are transferrable onto a variety of substrates. The integration of these sensors for RLC circuits enables wireless monitoring.",
author = "Joohee Kim and Lee, {Mi Sun} and Sangbin Jeon and Minji Kim and Sungwon Kim and Kukjoo Kim and Franklin Bien and Hong, {Sung You} and Jang-Ung Park",
year = "2015",
month = "6",
day = "1",
doi = "10.1002/adma.201500710",
language = "English",
volume = "27",
pages = "3292--3297",
journal = "Advanced Materials",
issn = "0935-9648",
publisher = "Wiley-VCH Verlag",
number = "21",

}

Highly transparent and stretchable field-effect transistor sensors using graphene-nanowire hybrid nanostructures. / Kim, Joohee; Lee, Mi Sun; Jeon, Sangbin; Kim, Minji; Kim, Sungwon; Kim, Kukjoo; Bien, Franklin; Hong, Sung You; Park, Jang-Ung.

In: Advanced Materials, Vol. 27, No. 21, 01.06.2015, p. 3292-3297.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Highly transparent and stretchable field-effect transistor sensors using graphene-nanowire hybrid nanostructures

AU - Kim, Joohee

AU - Lee, Mi Sun

AU - Jeon, Sangbin

AU - Kim, Minji

AU - Kim, Sungwon

AU - Kim, Kukjoo

AU - Bien, Franklin

AU - Hong, Sung You

AU - Park, Jang-Ung

PY - 2015/6/1

Y1 - 2015/6/1

N2 - Transparent and stretchable electronics with remarkable bendability, conformability, and lightness are the key attributes for sensing or wearable devices. Transparent and stretchable field-effect transistor sensors using graphene-metal nanowire hybrid nanostructures have high mobility (≈3000 cm2 V-1 s-1) with low contact resistance, and they are transferrable onto a variety of substrates. The integration of these sensors for RLC circuits enables wireless monitoring.

AB - Transparent and stretchable electronics with remarkable bendability, conformability, and lightness are the key attributes for sensing or wearable devices. Transparent and stretchable field-effect transistor sensors using graphene-metal nanowire hybrid nanostructures have high mobility (≈3000 cm2 V-1 s-1) with low contact resistance, and they are transferrable onto a variety of substrates. The integration of these sensors for RLC circuits enables wireless monitoring.

UR - http://www.scopus.com/inward/record.url?scp=85027943985&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85027943985&partnerID=8YFLogxK

U2 - 10.1002/adma.201500710

DO - 10.1002/adma.201500710

M3 - Article

VL - 27

SP - 3292

EP - 3297

JO - Advanced Materials

JF - Advanced Materials

SN - 0935-9648

IS - 21

ER -