Horizontal-branch morphology and the photometric evolution of old stellar populations

Hyun Chul Lee, Young-Wook Lee, Brad K. Gibson

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

Theoretical integrated broadband colors ranging from far-UV to near-IR have been computed for old stellar systems from our evolutionary population synthesis code. These models take into account, for the first time, the detailed systematic variation of horizontal-branch (HB) morphology with age and metallicity. Our models show that some temperature-sensitive color indices are significantly affected by the presence of blue HB stars. In particular, B-V does not become monotonically redder as metallicity increases at given ages, but becomes bluer by as much as ∼0.15 mag because of the contribution from blue HB stars. Similar trends are also found in the Washington photometric system. In addition to appropriate age-sensitive spectrophotometric indices, the use of far-UV to optical colors is proposed as a powerful age diagnostic for old stellar systems with differing HB morphologies. Our models are calibrated in the B-V, V-I, C-T1, and M-T1 versus [Fe/H] planes, using low-reddened Galactic globular clusters (GCs) [E(B- V) < 0.2], and the relative age difference between the older inner halo Galactic GCs and younger outer halo counterparts is well reproduced. Several empirical linear color-metallicity transformation relations are assessed with our models, and it is noted that they may not be safely used to estimate metallicity if there are sizable age differences among GCs within and between galaxies. M3I GCs are found to be fundamentally similar to those in the Milky Way, not only in the optical to near-IR range, but also in the UV range. For globular cluster systems in two nearby giant ellipticals, M87 and NGC 1399, the current available photometric data in the literature do not appear sufficient to provide robust age discrimination. It is anticipated, however, that the detailed population models presented here, coupled with further precise spectrophotometric observations of globular cluster systems in external galaxies from the large ground-based telescopes and space UV facilities, will enable us to accurately estimate their ages and metallicities.

Original languageEnglish
Pages (from-to)2664-2676
Number of pages13
JournalAstronomical Journal
Volume124
Issue number5 1763
DOIs
Publication statusPublished - 2002 Nov 1

Fingerprint

globular clusters
metallicity
horizontal branch stars
color
blue stars
stellar systems
ageism
galaxies
galactic halos
estimates
discrimination
halos
telescopes
broadband
trends
synthesis
temperature

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

Lee, Hyun Chul ; Lee, Young-Wook ; Gibson, Brad K. / Horizontal-branch morphology and the photometric evolution of old stellar populations. In: Astronomical Journal. 2002 ; Vol. 124, No. 5 1763. pp. 2664-2676.
@article{ab534fdb95b1487996083fc506889d33,
title = "Horizontal-branch morphology and the photometric evolution of old stellar populations",
abstract = "Theoretical integrated broadband colors ranging from far-UV to near-IR have been computed for old stellar systems from our evolutionary population synthesis code. These models take into account, for the first time, the detailed systematic variation of horizontal-branch (HB) morphology with age and metallicity. Our models show that some temperature-sensitive color indices are significantly affected by the presence of blue HB stars. In particular, B-V does not become monotonically redder as metallicity increases at given ages, but becomes bluer by as much as ∼0.15 mag because of the contribution from blue HB stars. Similar trends are also found in the Washington photometric system. In addition to appropriate age-sensitive spectrophotometric indices, the use of far-UV to optical colors is proposed as a powerful age diagnostic for old stellar systems with differing HB morphologies. Our models are calibrated in the B-V, V-I, C-T1, and M-T1 versus [Fe/H] planes, using low-reddened Galactic globular clusters (GCs) [E(B- V) < 0.2], and the relative age difference between the older inner halo Galactic GCs and younger outer halo counterparts is well reproduced. Several empirical linear color-metallicity transformation relations are assessed with our models, and it is noted that they may not be safely used to estimate metallicity if there are sizable age differences among GCs within and between galaxies. M3I GCs are found to be fundamentally similar to those in the Milky Way, not only in the optical to near-IR range, but also in the UV range. For globular cluster systems in two nearby giant ellipticals, M87 and NGC 1399, the current available photometric data in the literature do not appear sufficient to provide robust age discrimination. It is anticipated, however, that the detailed population models presented here, coupled with further precise spectrophotometric observations of globular cluster systems in external galaxies from the large ground-based telescopes and space UV facilities, will enable us to accurately estimate their ages and metallicities.",
author = "Lee, {Hyun Chul} and Young-Wook Lee and Gibson, {Brad K.}",
year = "2002",
month = "11",
day = "1",
doi = "10.1086/344066",
language = "English",
volume = "124",
pages = "2664--2676",
journal = "Astronomical Journal",
issn = "0004-6256",
publisher = "IOP Publishing Ltd.",
number = "5 1763",

}

Horizontal-branch morphology and the photometric evolution of old stellar populations. / Lee, Hyun Chul; Lee, Young-Wook; Gibson, Brad K.

In: Astronomical Journal, Vol. 124, No. 5 1763, 01.11.2002, p. 2664-2676.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Horizontal-branch morphology and the photometric evolution of old stellar populations

AU - Lee, Hyun Chul

AU - Lee, Young-Wook

AU - Gibson, Brad K.

PY - 2002/11/1

Y1 - 2002/11/1

N2 - Theoretical integrated broadband colors ranging from far-UV to near-IR have been computed for old stellar systems from our evolutionary population synthesis code. These models take into account, for the first time, the detailed systematic variation of horizontal-branch (HB) morphology with age and metallicity. Our models show that some temperature-sensitive color indices are significantly affected by the presence of blue HB stars. In particular, B-V does not become monotonically redder as metallicity increases at given ages, but becomes bluer by as much as ∼0.15 mag because of the contribution from blue HB stars. Similar trends are also found in the Washington photometric system. In addition to appropriate age-sensitive spectrophotometric indices, the use of far-UV to optical colors is proposed as a powerful age diagnostic for old stellar systems with differing HB morphologies. Our models are calibrated in the B-V, V-I, C-T1, and M-T1 versus [Fe/H] planes, using low-reddened Galactic globular clusters (GCs) [E(B- V) < 0.2], and the relative age difference between the older inner halo Galactic GCs and younger outer halo counterparts is well reproduced. Several empirical linear color-metallicity transformation relations are assessed with our models, and it is noted that they may not be safely used to estimate metallicity if there are sizable age differences among GCs within and between galaxies. M3I GCs are found to be fundamentally similar to those in the Milky Way, not only in the optical to near-IR range, but also in the UV range. For globular cluster systems in two nearby giant ellipticals, M87 and NGC 1399, the current available photometric data in the literature do not appear sufficient to provide robust age discrimination. It is anticipated, however, that the detailed population models presented here, coupled with further precise spectrophotometric observations of globular cluster systems in external galaxies from the large ground-based telescopes and space UV facilities, will enable us to accurately estimate their ages and metallicities.

AB - Theoretical integrated broadband colors ranging from far-UV to near-IR have been computed for old stellar systems from our evolutionary population synthesis code. These models take into account, for the first time, the detailed systematic variation of horizontal-branch (HB) morphology with age and metallicity. Our models show that some temperature-sensitive color indices are significantly affected by the presence of blue HB stars. In particular, B-V does not become monotonically redder as metallicity increases at given ages, but becomes bluer by as much as ∼0.15 mag because of the contribution from blue HB stars. Similar trends are also found in the Washington photometric system. In addition to appropriate age-sensitive spectrophotometric indices, the use of far-UV to optical colors is proposed as a powerful age diagnostic for old stellar systems with differing HB morphologies. Our models are calibrated in the B-V, V-I, C-T1, and M-T1 versus [Fe/H] planes, using low-reddened Galactic globular clusters (GCs) [E(B- V) < 0.2], and the relative age difference between the older inner halo Galactic GCs and younger outer halo counterparts is well reproduced. Several empirical linear color-metallicity transformation relations are assessed with our models, and it is noted that they may not be safely used to estimate metallicity if there are sizable age differences among GCs within and between galaxies. M3I GCs are found to be fundamentally similar to those in the Milky Way, not only in the optical to near-IR range, but also in the UV range. For globular cluster systems in two nearby giant ellipticals, M87 and NGC 1399, the current available photometric data in the literature do not appear sufficient to provide robust age discrimination. It is anticipated, however, that the detailed population models presented here, coupled with further precise spectrophotometric observations of globular cluster systems in external galaxies from the large ground-based telescopes and space UV facilities, will enable us to accurately estimate their ages and metallicities.

UR - http://www.scopus.com/inward/record.url?scp=0141751947&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0141751947&partnerID=8YFLogxK

U2 - 10.1086/344066

DO - 10.1086/344066

M3 - Article

VL - 124

SP - 2664

EP - 2676

JO - Astronomical Journal

JF - Astronomical Journal

SN - 0004-6256

IS - 5 1763

ER -