How to Change the Reaction Chemistry on Nonprecious Metal Oxide Nanostructure Materials for Electrocatalytic Oxidation of Biomass-Derived Glycerol to Renewable Chemicals

Lee Seul Oh, Minseon Park, Yoo Sei Park, Youngmin Kim, Wongeun Yoon, Jeemin Hwang, Eunho Lim, Jong Hyeok Park, Sung Mook Choi, Min Ho Seo, Won Bae Kim, Hyung Ju Kim

Research output: Contribution to journalArticlepeer-review

Abstract

Au and Pt are well-known catalysts for electrocatalytic oxidation of biomass-derived glycerol. Although some nonprecious-metal-based materials to replace the costly Au and Pt are used for this reaction, the fundamental question of how the nonprecious catalysts affect the reaction chemistry and mechanism compared to Au and Pt catalysts is still unanswered. In this work, both experimental and computational methods are used to understand how and why the reaction performance and chemistry for the electrocatalytic glycerol oxidation reaction (EGOR) change with electrochemically-synthesized CuCo-oxide, Cu-oxide, and Co-oxide catalysts compared to conventional Au and Pt catalysts. The Au and Pt catalysts generate major glyceric acid and glycolic acid products from the EGOR. Interestingly, the prepared Cu-based oxides produce glycolic acid and formic acid with high selectivity of about 90.0%. This different reaction chemistry is related to the enhanced ability of C-C bond cleavage on the Cu-based oxide materials. The density functional theory calculations demonstrate that the formic acids are mainly formed on the Cu-based oxide surfaces rather than in the process of glycolic acid formation in the free energy diagram. This study provides critical scientific insights into developing future nonprecious-based materials for electrochemical biomass conversions.

Original languageEnglish
Article number2203285
JournalAdvanced Materials
Volume35
Issue number4
DOIs
Publication statusPublished - 2023 Jan 26

Bibliographical note

Funding Information:
L.S.O., M.P., and Y.‐S.P. contributed equally to this work. This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Grant No. NRF‐2020M3H4A1A02084591). This research was also supported by the NRF grant funded by the Korea government (MSIT) (Grant No. NRF‐2021R1A5A1084921).

Publisher Copyright:
© 2022 Wiley-VCH GmbH.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'How to Change the Reaction Chemistry on Nonprecious Metal Oxide Nanostructure Materials for Electrocatalytic Oxidation of Biomass-Derived Glycerol to Renewable Chemicals'. Together they form a unique fingerprint.

Cite this