Human health monitoring technology

Byung Hyun Kim, Jong Gwan Yook

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

Monitoring vital signs from human body is very important to healthcare and medical diagnosis, because they contain valuable information about arterial occlusions, arrhythmia, atherosclerosis, autonomous nervous system pathologies, stress level, and obstructive sleep apnea. Existing methods, such as electrocardiogram (ECG) sensor and photoplethysmogram (PPG) sensor, requires direct contact to the skin and it can causes skin irritation and the inconvenience of long-term wearing. For reducing the inconvenience in the conventional sensors, microwave and millimeter-wave sensors have been proposed since 1970s using micro-Doppler effect from one's cardiopulmonary activity. The Doppler radar sensor can remotely detect the respiration and heartbeat up to few meters away from the subject, but they have a multiple subject issue and are not suitable for an ambulatory subject. As a compromise, a noncontact proximity vital sign sensor has been recently proposed and developed. The purpose of this paper is to review the noncontact proximity vital sign sensors for detection of respiration, heartbeat rate, and/or wrist pulse. This sensor basically employs near-field perturbation of radio-frequency (RF) planar resonator due to the proximity of the one's chest or radial artery at the wrist. Various sensing systems based on the SAW filter, phase-locked loop (PLL) synthesizer, reflectometer, and interferometer have been proposed. These self-sustained systems can measure the nearfield perturbation and transform it into DC voltage variation. Consequently, they can detect the respiration and heartbeat rate near the chest of subject and pulse from radial artery at the wrist.

Original languageEnglish
Title of host publicationMicro- and Nanotechnology Sensors, Systems, and Applications IX
EditorsAchyut K. Dutta, M. Saif Islam, Thomas George
PublisherSPIE
ISBN (Electronic)9781510608894
DOIs
Publication statusPublished - 2017
EventMicro- and Nanotechnology Sensors, Systems, and Applications IX 2017 - Anaheim, United States
Duration: 2017 Apr 92017 Apr 13

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10194
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherMicro- and Nanotechnology Sensors, Systems, and Applications IX 2017
Country/TerritoryUnited States
CityAnaheim
Period17/4/917/4/13

Bibliographical note

Publisher Copyright:
© 2017 SPIE.

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Human health monitoring technology'. Together they form a unique fingerprint.

Cite this