Human Papillomavirus 16 Oncoproteins Downregulate the Expression of miR-148a-3p, miR-190a-5p, and miR-199b-5p in Cervical Cancer

Mi Soon Han, Jae Myun Lee, Soo Nyung Kim, Jae-Hoon Kim, Hyonsuk Kim

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Almost all cervical cancers are associated with human papillomavirus (HPV); however, the majority of women infected with this virus do not develop cervical cancer. Therefore, new markers are needed for reliable screening of cervical cancer, especially in relation to HPV infection. We aimed to identify potential microRNAs that may serve as diagnostic markers for cervical cancer development in high-risk HPV-positive patients. We evaluated the microRNA expression profiles in 12 cervical tissues using the hybridization method and verified them by quantitative polymerase chain reaction (qPCR). Finally, we evaluated the effects of HPV16 oncoproteins on the expression of selected microRNAs using cervical cancer cells (CaSki and SiHa) and RNA interference. With the hybridization method, eight microRNAs (miR-9-5p, miR-136-5p, miR-148a-3p, miR-190a-5p, miR-199b-5p, miR-382-5p, miR-597-5p, and miR-655-3p) were found to be expressed differently in the HPV16-positive cervical cancer group and HPV16-positive normal group (fold change ≥ 2). The results of qPCR showed that miR-148a-3p, miR-190a-5p, miR-199b-5p, and miR-655-3p levels significantly decreased in the cancer group compared with the normal group. Upon silencing of HPV16 E5 and E6/E7, miR-148a-3p levels increased in both cell lines. Silencing of E6/E7 in SiHa cells led to the increase in miR-199b-5p and miR-190a-5p levels. Three HPV16 oncoproteins (E5, E6, and E7) downregulate miR-148a-3p, while E6/E7 inhibit miR-199b-5p and miR-190a-5p expression in cervical carcinoma. The three microRNAs, miR-148a-3p, miR-199b-5p, and miR-190a-5p, may be novel diagnostic biomarkers for cervical cancer development in high-risk HPV-positive patients.

Original languageEnglish
Article number1942867
JournalBioMed Research International
Volume2018
DOIs
Publication statusPublished - 2018 Jan 1

Fingerprint

Human papillomavirus 16
Oncogene Proteins
MicroRNAs
Uterine Cervical Neoplasms
Down-Regulation
Polymerase chain reaction
Cells
Biomarkers
Viruses
Polymerase Chain Reaction
Papillomavirus Infections
Screening
RNA Interference
RNA
Tissue
Carcinoma
Cell Line
Neoplasms

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Cite this

@article{7617d590ac4347648ac75cb84f6a4609,
title = "Human Papillomavirus 16 Oncoproteins Downregulate the Expression of miR-148a-3p, miR-190a-5p, and miR-199b-5p in Cervical Cancer",
abstract = "Almost all cervical cancers are associated with human papillomavirus (HPV); however, the majority of women infected with this virus do not develop cervical cancer. Therefore, new markers are needed for reliable screening of cervical cancer, especially in relation to HPV infection. We aimed to identify potential microRNAs that may serve as diagnostic markers for cervical cancer development in high-risk HPV-positive patients. We evaluated the microRNA expression profiles in 12 cervical tissues using the hybridization method and verified them by quantitative polymerase chain reaction (qPCR). Finally, we evaluated the effects of HPV16 oncoproteins on the expression of selected microRNAs using cervical cancer cells (CaSki and SiHa) and RNA interference. With the hybridization method, eight microRNAs (miR-9-5p, miR-136-5p, miR-148a-3p, miR-190a-5p, miR-199b-5p, miR-382-5p, miR-597-5p, and miR-655-3p) were found to be expressed differently in the HPV16-positive cervical cancer group and HPV16-positive normal group (fold change ≥ 2). The results of qPCR showed that miR-148a-3p, miR-190a-5p, miR-199b-5p, and miR-655-3p levels significantly decreased in the cancer group compared with the normal group. Upon silencing of HPV16 E5 and E6/E7, miR-148a-3p levels increased in both cell lines. Silencing of E6/E7 in SiHa cells led to the increase in miR-199b-5p and miR-190a-5p levels. Three HPV16 oncoproteins (E5, E6, and E7) downregulate miR-148a-3p, while E6/E7 inhibit miR-199b-5p and miR-190a-5p expression in cervical carcinoma. The three microRNAs, miR-148a-3p, miR-199b-5p, and miR-190a-5p, may be novel diagnostic biomarkers for cervical cancer development in high-risk HPV-positive patients.",
author = "Han, {Mi Soon} and Lee, {Jae Myun} and Kim, {Soo Nyung} and Jae-Hoon Kim and Hyonsuk Kim",
year = "2018",
month = "1",
day = "1",
doi = "10.1155/2018/1942867",
language = "English",
volume = "2018",
journal = "BioMed Research International",
issn = "2314-6133",
publisher = "Hindawi Publishing Corporation",

}

Human Papillomavirus 16 Oncoproteins Downregulate the Expression of miR-148a-3p, miR-190a-5p, and miR-199b-5p in Cervical Cancer. / Han, Mi Soon; Lee, Jae Myun; Kim, Soo Nyung; Kim, Jae-Hoon; Kim, Hyonsuk.

In: BioMed Research International, Vol. 2018, 1942867, 01.01.2018.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Human Papillomavirus 16 Oncoproteins Downregulate the Expression of miR-148a-3p, miR-190a-5p, and miR-199b-5p in Cervical Cancer

AU - Han, Mi Soon

AU - Lee, Jae Myun

AU - Kim, Soo Nyung

AU - Kim, Jae-Hoon

AU - Kim, Hyonsuk

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Almost all cervical cancers are associated with human papillomavirus (HPV); however, the majority of women infected with this virus do not develop cervical cancer. Therefore, new markers are needed for reliable screening of cervical cancer, especially in relation to HPV infection. We aimed to identify potential microRNAs that may serve as diagnostic markers for cervical cancer development in high-risk HPV-positive patients. We evaluated the microRNA expression profiles in 12 cervical tissues using the hybridization method and verified them by quantitative polymerase chain reaction (qPCR). Finally, we evaluated the effects of HPV16 oncoproteins on the expression of selected microRNAs using cervical cancer cells (CaSki and SiHa) and RNA interference. With the hybridization method, eight microRNAs (miR-9-5p, miR-136-5p, miR-148a-3p, miR-190a-5p, miR-199b-5p, miR-382-5p, miR-597-5p, and miR-655-3p) were found to be expressed differently in the HPV16-positive cervical cancer group and HPV16-positive normal group (fold change ≥ 2). The results of qPCR showed that miR-148a-3p, miR-190a-5p, miR-199b-5p, and miR-655-3p levels significantly decreased in the cancer group compared with the normal group. Upon silencing of HPV16 E5 and E6/E7, miR-148a-3p levels increased in both cell lines. Silencing of E6/E7 in SiHa cells led to the increase in miR-199b-5p and miR-190a-5p levels. Three HPV16 oncoproteins (E5, E6, and E7) downregulate miR-148a-3p, while E6/E7 inhibit miR-199b-5p and miR-190a-5p expression in cervical carcinoma. The three microRNAs, miR-148a-3p, miR-199b-5p, and miR-190a-5p, may be novel diagnostic biomarkers for cervical cancer development in high-risk HPV-positive patients.

AB - Almost all cervical cancers are associated with human papillomavirus (HPV); however, the majority of women infected with this virus do not develop cervical cancer. Therefore, new markers are needed for reliable screening of cervical cancer, especially in relation to HPV infection. We aimed to identify potential microRNAs that may serve as diagnostic markers for cervical cancer development in high-risk HPV-positive patients. We evaluated the microRNA expression profiles in 12 cervical tissues using the hybridization method and verified them by quantitative polymerase chain reaction (qPCR). Finally, we evaluated the effects of HPV16 oncoproteins on the expression of selected microRNAs using cervical cancer cells (CaSki and SiHa) and RNA interference. With the hybridization method, eight microRNAs (miR-9-5p, miR-136-5p, miR-148a-3p, miR-190a-5p, miR-199b-5p, miR-382-5p, miR-597-5p, and miR-655-3p) were found to be expressed differently in the HPV16-positive cervical cancer group and HPV16-positive normal group (fold change ≥ 2). The results of qPCR showed that miR-148a-3p, miR-190a-5p, miR-199b-5p, and miR-655-3p levels significantly decreased in the cancer group compared with the normal group. Upon silencing of HPV16 E5 and E6/E7, miR-148a-3p levels increased in both cell lines. Silencing of E6/E7 in SiHa cells led to the increase in miR-199b-5p and miR-190a-5p levels. Three HPV16 oncoproteins (E5, E6, and E7) downregulate miR-148a-3p, while E6/E7 inhibit miR-199b-5p and miR-190a-5p expression in cervical carcinoma. The three microRNAs, miR-148a-3p, miR-199b-5p, and miR-190a-5p, may be novel diagnostic biomarkers for cervical cancer development in high-risk HPV-positive patients.

UR - http://www.scopus.com/inward/record.url?scp=85058618587&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85058618587&partnerID=8YFLogxK

U2 - 10.1155/2018/1942867

DO - 10.1155/2018/1942867

M3 - Article

VL - 2018

JO - BioMed Research International

JF - BioMed Research International

SN - 2314-6133

M1 - 1942867

ER -