Abstract
This paper presents the dual-leakage hybrid layer modeling (DL-HLM) method for the linear permanent-magnet synchronous motors (LPMSMs) in a heavily saturated state. The proposed hybrid model consists of the nonlinear dual-leakage flux-tube model for the iron-cored armature where the geometric saliency exists, the Maxwell model for the PM track with uniform layers, and the hybrid input-output conversion method for the iteration between two models. As the minimum number of leakage flux paths, the dual-leakage flux-tube network is selected, considering the opposite-direction leakage fluxes generated by the flux-steering effect in heavily saturated iron-core teeth. The novel reluctance adaptation methods are also proposed, which allow the DL-HLM to accurately capture significant nonlinearities even with the minimum number of leakage flux paths, thereby correctly estimating motor forces in high-performance LPMSMs. The proposed DL-HLM is validated comparing to the equivalent finite element method (FEM) in terms of the magnetic fields in the working air-gap and motor force performances. The proposed modeling method estimates the magnetic fields and forces with an accuracy of higher than 95% even at significantly high saturation levels while simultaneously achieving multiple-orders-of-magnitude faster computation time as compared to the FEM.
Original language | English |
---|---|
Pages (from-to) | 367-378 |
Number of pages | 12 |
Journal | IEEE Transactions on Energy Conversion |
Volume | 38 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2023 Mar 1 |
Bibliographical note
Publisher Copyright:© 1986-2012 IEEE.
All Science Journal Classification (ASJC) codes
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering