Hydrogel-integrated Microfluidic Systems for Advanced Stem Cell Engineering

Soohwan An, Seung Yeop Han, Seung Woo Cho

Research output: Contribution to journalReview articlepeer-review

4 Citations (Scopus)

Abstract

Previous culture techniques are often ineffective for providing appropriate conditions to cells grown in vitro for efficient growth and maturation. However, the advent of microfluidic chips allows us to manipulate various factors from co-culturing cells to inducing shear stress and biochemical gradient. The above have all been effectively applied to stem cell engineering, allowing dynamic interactions with other cells and, as a result, acquisition of a more mature state. The introduction of both synthetic and natural hydrogels into the chip provides more precise in vivo-like biophysical and biochemical cues to cells, enabling better recapitulation of the in vivo-like physiological behaviors and further maturation of stem cells even to the scale of organoids. This review addresses fundamental roles of microfluidic chips and hydrogels and how hydrogel-integrated chip systems provide breakthroughs in advanced stem cell engineering.

Original languageEnglish
Pages (from-to)306-322
Number of pages17
JournalBiochip Journal
Volume13
Issue number4
DOIs
Publication statusPublished - 2019 Dec 1

Bibliographical note

Funding Information:
This work was supported by grants (2017M3C7A1047659 and 2017R1A2B3005 994) from the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT), Republic of Korea. Conflict of Interests The authors declare no competing financial interests.

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Biomedical Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Hydrogel-integrated Microfluidic Systems for Advanced Stem Cell Engineering'. Together they form a unique fingerprint.

Cite this