Abstract
Conductive and stretchable electrodes that can be printed directly on a stretchable substrate have drawn extensive attention for wearable electronics and electronic skins. Printable inks that contain liquid metal are strong candidates for these applications, but the insulating oxide skin that forms around the liquid metal particles limits their conductivity. This study reveals that hydrogen doping introduced by ultrasonication in the presence of aliphatic polymers makes the oxide skin highly conductive and deformable. X-ray photoelectron spectroscopy and atom probe tomography confirmed the hydrogen doping, and first-principles calculations were used to rationalize the obtained conductivity. The printed circuit lines show a metallic conductivity (25,000 S cm–1), excellent electromechanical decoupling at a 500% uniaxial stretching, mechanical resistance to scratches and long-term stability in wide ranges of temperature and humidity. The self-passivation of the printed lines allows the direct printing of three-dimensional circuit lines and double-layer planar coils that are used as stretchable inductive strain sensors.
Original language | English |
---|---|
Pages (from-to) | 533-540 |
Number of pages | 8 |
Journal | Nature materials |
Volume | 20 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2021 Apr |
Bibliographical note
Funding Information:S.V. and U.J. acknowledge the support of a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (no. NRF-2020R1A2C3012738), the Center for Advanced Soft-Electronics funded by the Ministry of Science, ICT and Future Planning as Global Frontier Project (CASE-2015M3A6A5072945) and the Korea Research Institute of Chemical Technology (KRICT). W.J., E.K. and A.S. gratefully acknowledge support from the Ministry of Science and ICT under the Creative Materials Discovery Program (2018M3D1A1058536) and computational resources from KISTI (KSC-2019-CRE-0024). H.W. and L.B. are thankful for the financial support of a Marie Sklodowska-Curie Individual Fellowship (‘3D-SITS’) from the European Union’s Horizon 2020 research and innovation programme (no. 799733). J.B.S. appreciates financial support from the Ministry of Science and ICT (MSIT) of the Korean government (no. 2018R1C1B6008585). The authors thank S. J. Park and J. M. Park (POSTECH) for supporting the rheology measurements.
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Limited.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering