Abstract
Layer-structured materials are of central importance in a wide range of research fields owing to their unique properties originating from their two dimensionality and anisotropy. Herein, quasi-2D layer-structured I-Mn-V (I: alkali metals and V: pnictogen elements) compounds are investigated, which are potential antiferromagnetic (AFM) semiconductors. Single crystals of I-Mn-V compounds are successfully grown using the self-flux method and their electronic and magnetic properties are analyzed in correlation with structural parameters. Combined with theoretical calculations, the structural analysis indicates that the variation in the bonding angle between V-Mn-V is responsible for the change in the orbital hybridization of Mn and V, predominantly affecting their anisotropic semiconducting properties. Anisotropy in the magnetic properties is also found, where AFM ordering is expected to occur in the in-plane direction, as supported by spin–structure calculations. Furthermore, a possible ferromagnetic (FM) transition is discussed in relation to the vacancy defects. This study provides a candidate material group for AFM and FM spintronics and a basis for exploring magnetic semiconductors in quasi-2D layer-structured systems.
Original language | English |
---|---|
Article number | 2200074 |
Journal | Advanced Materials |
Volume | 34 |
Issue number | 33 |
DOIs | |
Publication status | Published - 2022 Aug 18 |
Bibliographical note
Funding Information:B.I.Y. and N.L. contributed equally to this work. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science, ICT & Future Planning) (Grant Nos. 2022M3H4A1A01010832 and 2022M3H4A1A04076667).
Publisher Copyright:
© 2022 Wiley-VCH GmbH.
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering