Immunotoxicity of titanium dioxide nanoparticles via simultaneous induction of apoptosis and multiple toll-like receptors signaling through ROS-dependent SAPK/JNK and p38 MAPK activation

Madhusmita Dhupal, Jae Min Oh, Dipti Ranjan Tripathy, Soo-Ki Kim, Sang Baek Koh, Kyusang Park

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Background: Titanium dioxide nanoparticles (TiO 2 NPs) represent a scientific breakthrough in the areas of biological and medicinal applications. Interaction of TiO 2 NPs with components of innate immune system remains elusive. Aim: This study explored in vitro immunotoxicity of murine macrophage RAW 264.7 to TiO 2 NPs (20 nm, negative charge) and its underlying molecular mechanism by way of immunoredox profiling. Materials and methods: In this study, chemically synthesized BSA-functionalized TiO 2 NPs (20 nm, negative charge) were characterized and immunotoxicity was investigated on RAW 264.7 cells. Results: We found that reactive oxygen species levels significantly increased with increasing nitric oxide production, whereas depleting endogenous antioxidant super oxide dismutase as well as nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels. Furthermore, NPs exposure increased the expression of apoptotic factors such as BAX, BIM, and PUMA with disruption of mitochondrial membrane potential (Δψ m ) that lead to decrease in immunocytes. Molecular immune profiling revealed the activation of multiple toll-like receptors (TLRs) 4/9/12/13 simultaneously with the phosphorylation of p-p38MAPK and p-SAPK/c-Jun N-terminal kinase (JNK) compared to untreated control. Conclusion: Collectively, this study shows that the molecular nature of TiO 2 SA20(-) NP-induced immunotoxicity in RAW 264.7 macrophage is simultaneous induction of immunocyte apoptosis and multiple TLRs signaling through oxidative stress-dependent SAPK/JNK and p38 mitogen-associated protein kinase activation. This is the first study to address newer molecular mechanism of TiO 2 SA20(-) NP-induced immunotoxicity.

Original languageEnglish
Pages (from-to)6735-6750
Number of pages16
JournalInternational Journal of Nanomedicine
Volume13
DOIs
Publication statusPublished - 2018 Jan 1

Fingerprint

Macrophages
Toll-Like Receptors
p38 Mitogen-Activated Protein Kinases
Cell death
Nanoparticles
Titanium dioxide
Phosphotransferases
Chemical activation
Toll-Like Receptor 9
Apoptosis
Proteins
Toll-Like Receptor 4
Phosphorylation
Oxidative stress
JNK Mitogen-Activated Protein Kinases
Mitochondrial Membrane Potential
Immune system
Nitric oxide
Antioxidants
Mitogens

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Bioengineering
  • Biomaterials
  • Pharmaceutical Science
  • Drug Discovery
  • Organic Chemistry

Cite this

@article{ece7251bd1d44bbaa1902a6b1e614c47,
title = "Immunotoxicity of titanium dioxide nanoparticles via simultaneous induction of apoptosis and multiple toll-like receptors signaling through ROS-dependent SAPK/JNK and p38 MAPK activation",
abstract = "Background: Titanium dioxide nanoparticles (TiO 2 NPs) represent a scientific breakthrough in the areas of biological and medicinal applications. Interaction of TiO 2 NPs with components of innate immune system remains elusive. Aim: This study explored in vitro immunotoxicity of murine macrophage RAW 264.7 to TiO 2 NPs (20 nm, negative charge) and its underlying molecular mechanism by way of immunoredox profiling. Materials and methods: In this study, chemically synthesized BSA-functionalized TiO 2 NPs (20 nm, negative charge) were characterized and immunotoxicity was investigated on RAW 264.7 cells. Results: We found that reactive oxygen species levels significantly increased with increasing nitric oxide production, whereas depleting endogenous antioxidant super oxide dismutase as well as nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels. Furthermore, NPs exposure increased the expression of apoptotic factors such as BAX, BIM, and PUMA with disruption of mitochondrial membrane potential (Δψ m ) that lead to decrease in immunocytes. Molecular immune profiling revealed the activation of multiple toll-like receptors (TLRs) 4/9/12/13 simultaneously with the phosphorylation of p-p38MAPK and p-SAPK/c-Jun N-terminal kinase (JNK) compared to untreated control. Conclusion: Collectively, this study shows that the molecular nature of TiO 2 SA20(-) NP-induced immunotoxicity in RAW 264.7 macrophage is simultaneous induction of immunocyte apoptosis and multiple TLRs signaling through oxidative stress-dependent SAPK/JNK and p38 mitogen-associated protein kinase activation. This is the first study to address newer molecular mechanism of TiO 2 SA20(-) NP-induced immunotoxicity.",
author = "Madhusmita Dhupal and Oh, {Jae Min} and Tripathy, {Dipti Ranjan} and Soo-Ki Kim and Koh, {Sang Baek} and Kyusang Park",
year = "2018",
month = "1",
day = "1",
doi = "10.2147/IJN.S176087",
language = "English",
volume = "13",
pages = "6735--6750",
journal = "International Journal of Nanomedicine",
issn = "1176-9114",
publisher = "Dove Medical Press Ltd.",

}

Immunotoxicity of titanium dioxide nanoparticles via simultaneous induction of apoptosis and multiple toll-like receptors signaling through ROS-dependent SAPK/JNK and p38 MAPK activation. / Dhupal, Madhusmita; Oh, Jae Min; Tripathy, Dipti Ranjan; Kim, Soo-Ki; Koh, Sang Baek; Park, Kyusang.

In: International Journal of Nanomedicine, Vol. 13, 01.01.2018, p. 6735-6750.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Immunotoxicity of titanium dioxide nanoparticles via simultaneous induction of apoptosis and multiple toll-like receptors signaling through ROS-dependent SAPK/JNK and p38 MAPK activation

AU - Dhupal, Madhusmita

AU - Oh, Jae Min

AU - Tripathy, Dipti Ranjan

AU - Kim, Soo-Ki

AU - Koh, Sang Baek

AU - Park, Kyusang

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Background: Titanium dioxide nanoparticles (TiO 2 NPs) represent a scientific breakthrough in the areas of biological and medicinal applications. Interaction of TiO 2 NPs with components of innate immune system remains elusive. Aim: This study explored in vitro immunotoxicity of murine macrophage RAW 264.7 to TiO 2 NPs (20 nm, negative charge) and its underlying molecular mechanism by way of immunoredox profiling. Materials and methods: In this study, chemically synthesized BSA-functionalized TiO 2 NPs (20 nm, negative charge) were characterized and immunotoxicity was investigated on RAW 264.7 cells. Results: We found that reactive oxygen species levels significantly increased with increasing nitric oxide production, whereas depleting endogenous antioxidant super oxide dismutase as well as nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels. Furthermore, NPs exposure increased the expression of apoptotic factors such as BAX, BIM, and PUMA with disruption of mitochondrial membrane potential (Δψ m ) that lead to decrease in immunocytes. Molecular immune profiling revealed the activation of multiple toll-like receptors (TLRs) 4/9/12/13 simultaneously with the phosphorylation of p-p38MAPK and p-SAPK/c-Jun N-terminal kinase (JNK) compared to untreated control. Conclusion: Collectively, this study shows that the molecular nature of TiO 2 SA20(-) NP-induced immunotoxicity in RAW 264.7 macrophage is simultaneous induction of immunocyte apoptosis and multiple TLRs signaling through oxidative stress-dependent SAPK/JNK and p38 mitogen-associated protein kinase activation. This is the first study to address newer molecular mechanism of TiO 2 SA20(-) NP-induced immunotoxicity.

AB - Background: Titanium dioxide nanoparticles (TiO 2 NPs) represent a scientific breakthrough in the areas of biological and medicinal applications. Interaction of TiO 2 NPs with components of innate immune system remains elusive. Aim: This study explored in vitro immunotoxicity of murine macrophage RAW 264.7 to TiO 2 NPs (20 nm, negative charge) and its underlying molecular mechanism by way of immunoredox profiling. Materials and methods: In this study, chemically synthesized BSA-functionalized TiO 2 NPs (20 nm, negative charge) were characterized and immunotoxicity was investigated on RAW 264.7 cells. Results: We found that reactive oxygen species levels significantly increased with increasing nitric oxide production, whereas depleting endogenous antioxidant super oxide dismutase as well as nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels. Furthermore, NPs exposure increased the expression of apoptotic factors such as BAX, BIM, and PUMA with disruption of mitochondrial membrane potential (Δψ m ) that lead to decrease in immunocytes. Molecular immune profiling revealed the activation of multiple toll-like receptors (TLRs) 4/9/12/13 simultaneously with the phosphorylation of p-p38MAPK and p-SAPK/c-Jun N-terminal kinase (JNK) compared to untreated control. Conclusion: Collectively, this study shows that the molecular nature of TiO 2 SA20(-) NP-induced immunotoxicity in RAW 264.7 macrophage is simultaneous induction of immunocyte apoptosis and multiple TLRs signaling through oxidative stress-dependent SAPK/JNK and p38 mitogen-associated protein kinase activation. This is the first study to address newer molecular mechanism of TiO 2 SA20(-) NP-induced immunotoxicity.

UR - http://www.scopus.com/inward/record.url?scp=85056512904&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85056512904&partnerID=8YFLogxK

U2 - 10.2147/IJN.S176087

DO - 10.2147/IJN.S176087

M3 - Article

C2 - 30425486

AN - SCOPUS:85056512904

VL - 13

SP - 6735

EP - 6750

JO - International Journal of Nanomedicine

JF - International Journal of Nanomedicine

SN - 1176-9114

ER -