TY - JOUR
T1 - Impact of elevated CO2 and N addition on bacteria, fungi, and archaea in a marsh ecosystem with various types of plants
AU - Lee, Seung Hoon
AU - Kim, Seon Young
AU - Ding, Weixing
AU - Kang, Hojeong
N1 - Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2015/6/28
Y1 - 2015/6/28
N2 - The individual effects of either elevated CO2 or N deposition on soil microbial communities have been widely studied, but limited information is available regarding the responses of the bacteria, fungi, and archaea communities to both elevated CO2 and N in wetland ecosystems with different types of plants. Using a terminal restriction fragment length polymorphism (T-RFLP) analysis and real-time quantitative PCR (RT-Q-PCR), we compared communities of bacteria, fungi, and archaea in a marsh microcosm with one of seven macrophytes, Typha latifolia, Phragmites japonica, Miscanthus sacchariflorus, Scirpus lacustris, Juncus effusus, Phragmites australis, or Zizania latifolia, after exposing them to eCO2 and/or amended N for 110 days. Overall, our results showed that the elevated CO2 and N may affect the bacterial and archaeal communities, while they may not affect the fungal community in terms of both diversity and abundance. The effects of elevated CO2 and N on microbial community vary depending on the plant types, and each microbial community shows different responses to the elevated CO2 and N. In particular, elevated CO2 might force a shift in the archaeal community irrespective of the plant type, and the effect of elevated CO2 was enhanced when combined with the N effect. This study indicates that elevated CO2 and N addition could lead to changes in the community structures of bacteria and archaea. Our results also suggest that the fungal group is less sensitive to external changes, while the bacterial and archaeal groups are more sensitive to them. Finally, the characteristics of the plant type and relevant physicochemical factors induced by the elevated CO2 and N may be important key factors structuring the microbial community’s response to environmental change, which implies the need for a more comprehensive approach to understanding the pattern of the wetland response to climate change.
AB - The individual effects of either elevated CO2 or N deposition on soil microbial communities have been widely studied, but limited information is available regarding the responses of the bacteria, fungi, and archaea communities to both elevated CO2 and N in wetland ecosystems with different types of plants. Using a terminal restriction fragment length polymorphism (T-RFLP) analysis and real-time quantitative PCR (RT-Q-PCR), we compared communities of bacteria, fungi, and archaea in a marsh microcosm with one of seven macrophytes, Typha latifolia, Phragmites japonica, Miscanthus sacchariflorus, Scirpus lacustris, Juncus effusus, Phragmites australis, or Zizania latifolia, after exposing them to eCO2 and/or amended N for 110 days. Overall, our results showed that the elevated CO2 and N may affect the bacterial and archaeal communities, while they may not affect the fungal community in terms of both diversity and abundance. The effects of elevated CO2 and N on microbial community vary depending on the plant types, and each microbial community shows different responses to the elevated CO2 and N. In particular, elevated CO2 might force a shift in the archaeal community irrespective of the plant type, and the effect of elevated CO2 was enhanced when combined with the N effect. This study indicates that elevated CO2 and N addition could lead to changes in the community structures of bacteria and archaea. Our results also suggest that the fungal group is less sensitive to external changes, while the bacterial and archaeal groups are more sensitive to them. Finally, the characteristics of the plant type and relevant physicochemical factors induced by the elevated CO2 and N may be important key factors structuring the microbial community’s response to environmental change, which implies the need for a more comprehensive approach to understanding the pattern of the wetland response to climate change.
UR - http://www.scopus.com/inward/record.url?scp=84929944707&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84929944707&partnerID=8YFLogxK
U2 - 10.1007/s00253-015-6385-8
DO - 10.1007/s00253-015-6385-8
M3 - Article
C2 - 25605423
AN - SCOPUS:84929944707
VL - 99
SP - 5295
EP - 5305
JO - Applied Microbiology and Biotechnology
JF - Applied Microbiology and Biotechnology
SN - 0175-7598
IS - 12
ER -