Impact or blast induced fire simulation of bi-directional PSC panel considering concrete confinement and spalling effect

Seung Jai Choi, Sang Won Lee, Jang Jay Ho Kim

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

In recent years, numerous explosion and collision related tragedies due to military attack, terrorist bombing, and vehicle accident have occurred all over the world. However, researches on Prestressed Concrete (PSC) infrastructures such as Prestressed Concrete Containment Vessels (PCCVs) and LNG storage tanks under extreme loading such as impact, blast, and fire loading scenario are not being studied sufficiently. Especially, researches on possible secondary fire after bomb explosion or accidental collision on concrete structures has not been performed, while most of the past researches related to extreme loadings on structures focused on ideal isolated extreme loading event researches. Therefore, in this study, the PSC panel such as wall of PCCV and LNG storage tank is analytically evaluated under impact-blast-fire combined loading scenarios. For the analytical simulations of impact/blast and fire loaded behavior of the PSC panel, commercial finite element analysis program of LS-DYNA and MIDAS FEA, respectively, were used. Then, a simulation procedure coupling LS-DYNA and MIDAS FEA using element elimination algorithm is proposed to couple explicit and implicit finite element analyses (FEA) to perform structural analysis of impact or blast induced fire loading scenario. Then, the simulation results from the PSC and RC specimens applied with impact induced fire or blast induced fire loadings were compared with those of undamaged PSC and RC specimens. The results showed that PSC panel was more severely damaged from the fire due to the confining effect of prestressing forces. Confining effect increased the thermal conductivity of concrete due to compaction of concrete. Also, the spalling of concrete caused by impact loading followed by fire loading were implemented to the simulation model using the element elimination procedure proposed in the study. The simulation results obtained from the proposed simulation procedure agree well with the impact induced fire test results.

Original languageEnglish
Pages (from-to)113-130
Number of pages18
JournalEngineering Structures
Volume149
DOIs
Publication statusPublished - 2017 Oct 15

Fingerprint

Spalling
Prestressed concrete
Fires
Concretes
Containment vessels
Liquefied natural gas
Explosions
Bombing
Tanks (containers)
Prestressing
Concrete construction
Structural analysis
Thermal conductivity
Accidents
Compaction
Finite element method

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering

Cite this

@article{85429158d2c546f89357e4337e8fc52a,
title = "Impact or blast induced fire simulation of bi-directional PSC panel considering concrete confinement and spalling effect",
abstract = "In recent years, numerous explosion and collision related tragedies due to military attack, terrorist bombing, and vehicle accident have occurred all over the world. However, researches on Prestressed Concrete (PSC) infrastructures such as Prestressed Concrete Containment Vessels (PCCVs) and LNG storage tanks under extreme loading such as impact, blast, and fire loading scenario are not being studied sufficiently. Especially, researches on possible secondary fire after bomb explosion or accidental collision on concrete structures has not been performed, while most of the past researches related to extreme loadings on structures focused on ideal isolated extreme loading event researches. Therefore, in this study, the PSC panel such as wall of PCCV and LNG storage tank is analytically evaluated under impact-blast-fire combined loading scenarios. For the analytical simulations of impact/blast and fire loaded behavior of the PSC panel, commercial finite element analysis program of LS-DYNA and MIDAS FEA, respectively, were used. Then, a simulation procedure coupling LS-DYNA and MIDAS FEA using element elimination algorithm is proposed to couple explicit and implicit finite element analyses (FEA) to perform structural analysis of impact or blast induced fire loading scenario. Then, the simulation results from the PSC and RC specimens applied with impact induced fire or blast induced fire loadings were compared with those of undamaged PSC and RC specimens. The results showed that PSC panel was more severely damaged from the fire due to the confining effect of prestressing forces. Confining effect increased the thermal conductivity of concrete due to compaction of concrete. Also, the spalling of concrete caused by impact loading followed by fire loading were implemented to the simulation model using the element elimination procedure proposed in the study. The simulation results obtained from the proposed simulation procedure agree well with the impact induced fire test results.",
author = "Choi, {Seung Jai} and Lee, {Sang Won} and Kim, {Jang Jay Ho}",
year = "2017",
month = "10",
day = "15",
doi = "10.1016/j.engstruct.2016.12.056",
language = "English",
volume = "149",
pages = "113--130",
journal = "Engineering Structures",
issn = "0141-0296",
publisher = "Elsevier BV",

}

Impact or blast induced fire simulation of bi-directional PSC panel considering concrete confinement and spalling effect. / Choi, Seung Jai; Lee, Sang Won; Kim, Jang Jay Ho.

In: Engineering Structures, Vol. 149, 15.10.2017, p. 113-130.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Impact or blast induced fire simulation of bi-directional PSC panel considering concrete confinement and spalling effect

AU - Choi, Seung Jai

AU - Lee, Sang Won

AU - Kim, Jang Jay Ho

PY - 2017/10/15

Y1 - 2017/10/15

N2 - In recent years, numerous explosion and collision related tragedies due to military attack, terrorist bombing, and vehicle accident have occurred all over the world. However, researches on Prestressed Concrete (PSC) infrastructures such as Prestressed Concrete Containment Vessels (PCCVs) and LNG storage tanks under extreme loading such as impact, blast, and fire loading scenario are not being studied sufficiently. Especially, researches on possible secondary fire after bomb explosion or accidental collision on concrete structures has not been performed, while most of the past researches related to extreme loadings on structures focused on ideal isolated extreme loading event researches. Therefore, in this study, the PSC panel such as wall of PCCV and LNG storage tank is analytically evaluated under impact-blast-fire combined loading scenarios. For the analytical simulations of impact/blast and fire loaded behavior of the PSC panel, commercial finite element analysis program of LS-DYNA and MIDAS FEA, respectively, were used. Then, a simulation procedure coupling LS-DYNA and MIDAS FEA using element elimination algorithm is proposed to couple explicit and implicit finite element analyses (FEA) to perform structural analysis of impact or blast induced fire loading scenario. Then, the simulation results from the PSC and RC specimens applied with impact induced fire or blast induced fire loadings were compared with those of undamaged PSC and RC specimens. The results showed that PSC panel was more severely damaged from the fire due to the confining effect of prestressing forces. Confining effect increased the thermal conductivity of concrete due to compaction of concrete. Also, the spalling of concrete caused by impact loading followed by fire loading were implemented to the simulation model using the element elimination procedure proposed in the study. The simulation results obtained from the proposed simulation procedure agree well with the impact induced fire test results.

AB - In recent years, numerous explosion and collision related tragedies due to military attack, terrorist bombing, and vehicle accident have occurred all over the world. However, researches on Prestressed Concrete (PSC) infrastructures such as Prestressed Concrete Containment Vessels (PCCVs) and LNG storage tanks under extreme loading such as impact, blast, and fire loading scenario are not being studied sufficiently. Especially, researches on possible secondary fire after bomb explosion or accidental collision on concrete structures has not been performed, while most of the past researches related to extreme loadings on structures focused on ideal isolated extreme loading event researches. Therefore, in this study, the PSC panel such as wall of PCCV and LNG storage tank is analytically evaluated under impact-blast-fire combined loading scenarios. For the analytical simulations of impact/blast and fire loaded behavior of the PSC panel, commercial finite element analysis program of LS-DYNA and MIDAS FEA, respectively, were used. Then, a simulation procedure coupling LS-DYNA and MIDAS FEA using element elimination algorithm is proposed to couple explicit and implicit finite element analyses (FEA) to perform structural analysis of impact or blast induced fire loading scenario. Then, the simulation results from the PSC and RC specimens applied with impact induced fire or blast induced fire loadings were compared with those of undamaged PSC and RC specimens. The results showed that PSC panel was more severely damaged from the fire due to the confining effect of prestressing forces. Confining effect increased the thermal conductivity of concrete due to compaction of concrete. Also, the spalling of concrete caused by impact loading followed by fire loading were implemented to the simulation model using the element elimination procedure proposed in the study. The simulation results obtained from the proposed simulation procedure agree well with the impact induced fire test results.

UR - http://www.scopus.com/inward/record.url?scp=85008485865&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85008485865&partnerID=8YFLogxK

U2 - 10.1016/j.engstruct.2016.12.056

DO - 10.1016/j.engstruct.2016.12.056

M3 - Article

VL - 149

SP - 113

EP - 130

JO - Engineering Structures

JF - Engineering Structures

SN - 0141-0296

ER -