Abstract
A near-field storage system using a solid immersion lens (SIL) has been studied as a high-density optical disc drive system. The major goal of this research is to improve the robustness of the air-gap controller for a SIL-based near-field recording (NFR) system against dynamic disturbances, such as external shocks. The servo system is essential in near-field (NF) technology because the nanogap distance between the SIL and the disc is 50nm or less. Also, the air-gap distance must be maintained without collision between the SIL and the disc to detect a stable gap error and read-out signals when an external shock is applied. Therefore, we propose an improved air-gap control algorithm using only an acceleration feedforward controller (AFC) to maintain the air-gap distance without contact for a 4.48 G at 10 ms shock. Thus, the antishock control performance for the SIL-based NF storage system in the presence of external shocks is markedly improved. Furthermore, to enhance the performance of the antishock air-gap control, we use the AFC with a double disturbance observer and a dead-zone nonlinear controller. As a result, the air-gap distance is maintained without contact for a 6.56 G@10ms shock.
Original language | English |
---|---|
Article number | 08KC06 |
Journal | Japanese journal of applied physics |
Volume | 49 |
Issue number | 8 PART 3 |
DOIs | |
Publication status | Published - 2010 Aug |
All Science Journal Classification (ASJC) codes
- Engineering(all)
- Physics and Astronomy(all)