TY - JOUR
T1 - Improved control of multiple-antibiotic-resistance-related microbial risk in swine manure wastes by autothermal thermophilic aerobic digestion
AU - Han, Il
AU - Congeevaram, Shankar
AU - Park, Joonhong
PY - 2009
Y1 - 2009
N2 - In this study, we microbiologically evaluated antibiotic resistance and pathogenicity in livestock (swine) manure as well as its biologically stabilized products. One of new livestock manure stabilization techniques is ATAD (Autothermal Thermophilic Aerobic Digestion). Because of its high operation temperature (60-65°C), it has been speculated to have effective microbial risk control in livestock manure. This hypothesis was tested by evaluating microbial risk in ATAD-treated swine manure. Antibiotic resistance, multiple antibiotic resistance (MAR), and pathogenicity were microbiologically examined for swine manure as well as its conventionally stabilized (anaerobically fermented) and ATAD-stabilized products. In the swine manure and its conventionally stabilized product, antibiotic resistant (tetracycline-, kanamycine-, ampicillin-, and rifampicin-resistant) bacteria and the pathogen indicator bacteria were detected. Furthermore, approximately 2-5% of the Staphylococcus and Salmonella colonies from their selective culture media were found to exhibit a MAR-phenotypes, suggesting a serious level of microbe induced health risk. In contrast, after the swine manure was stabilized with a pilot-scale ATAD treatment for 3 days at 60-65°C, antibiotic resistant bacteria, pathogen indicator bacteria, and MAR-exhibiting pathogens were all undetected. These findings support the improved control of microbial risk in livestock wastes by ATAD treatment.
AB - In this study, we microbiologically evaluated antibiotic resistance and pathogenicity in livestock (swine) manure as well as its biologically stabilized products. One of new livestock manure stabilization techniques is ATAD (Autothermal Thermophilic Aerobic Digestion). Because of its high operation temperature (60-65°C), it has been speculated to have effective microbial risk control in livestock manure. This hypothesis was tested by evaluating microbial risk in ATAD-treated swine manure. Antibiotic resistance, multiple antibiotic resistance (MAR), and pathogenicity were microbiologically examined for swine manure as well as its conventionally stabilized (anaerobically fermented) and ATAD-stabilized products. In the swine manure and its conventionally stabilized product, antibiotic resistant (tetracycline-, kanamycine-, ampicillin-, and rifampicin-resistant) bacteria and the pathogen indicator bacteria were detected. Furthermore, approximately 2-5% of the Staphylococcus and Salmonella colonies from their selective culture media were found to exhibit a MAR-phenotypes, suggesting a serious level of microbe induced health risk. In contrast, after the swine manure was stabilized with a pilot-scale ATAD treatment for 3 days at 60-65°C, antibiotic resistant bacteria, pathogen indicator bacteria, and MAR-exhibiting pathogens were all undetected. These findings support the improved control of microbial risk in livestock wastes by ATAD treatment.
UR - http://www.scopus.com/inward/record.url?scp=60849091601&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=60849091601&partnerID=8YFLogxK
U2 - 10.2166/wst.2009.856
DO - 10.2166/wst.2009.856
M3 - Article
C2 - 19182336
AN - SCOPUS:60849091601
VL - 59
SP - 267
EP - 271
JO - Water Science and Technology
JF - Water Science and Technology
SN - 0273-1223
IS - 2
ER -