Improvement of signal-to-interference ratio and signal-to-noise ratio in nerve cuff electrode systems

Jun Uk Chu, Kang Il Song, Sungmin Han, Soo Hyun Lee, Jinseok Kim, Ji Yoon Kang, Dosik Hwang, Jun Kyo Francis Suh, Kuiwon Choi, Inchan Youn

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)

Abstract

Cuff electrodes are effective for chronic electroneurogram (ENG) recording while minimizing nerve damage. However, the ENG signals are usually contaminated by electromyogram (EMG) activity from the surrounding muscles, stimulus artifacts produced by the electrical stimulation and noise generated in the first stage of the neural signal amplifier. This paper proposed a new cuff electrode to reduce the interference from EMG signals and stimulus artifacts. As a result, when an additional middle electrode was placed at the center of the cuff electrode, a significant improvement in the signal-to-interference ratio was achieved at 11% for the EMG signals and 12% for the stimulus artifacts when compared to a conventional tripolar cuff. Furthermore, a new low-noise amplifier was proposed to improve the signal-to-noise ratio. The circuit was designed based on a noise analysis to minimize the noise, and the results show that the total noise of the amplifier was below 1μV for a cuff impedance of 1 kΩ and a frequency bandwidth of 300 to 5000 Hz.

Original languageEnglish
Pages (from-to)943-967
Number of pages25
JournalPhysiological measurement
Volume33
Issue number6
DOIs
Publication statusPublished - 2012 Jun

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Physiology
  • Biomedical Engineering
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Improvement of signal-to-interference ratio and signal-to-noise ratio in nerve cuff electrode systems'. Together they form a unique fingerprint.

Cite this