Improvement of the stability and optoelectronic characteristics of molybdenum disulfide thin-film transistors by applying a nitrocellulose passivation layer

Byung Ha Kang, Su Jin Jung, Seonghwan Hong, I. Sak Lee, Seongin Hong, Sunkook Kim, Hyun Jae Kim

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Nitrocellulose is proposed as a passivation layer for multilayer molybdenum disulfide (MoS2) thin-film transistors (TFTs) to improve the stability of the devices. After the devised passivation layer was stacked, the threshold voltage shift of the nitrocellulose-passivated MoS2 TFT after the positive-bias temperature stress tests decreased from 11.43 to 4.80 V. This enhanced stability was the result of the protection of the MoS2 channel from external reactive molecules like H2O, O2, and others in the atmosphere. Not only the stability was improved; the electrical performance was also enhanced. The field effect mobility and on/off ratio increased 1.13 and 3.05 times, respectively, due to the narrowed width of the Schottky barrier from the interfacial dipoles between the nitrocellulose and the MoS2 layers. Additionally, the formation of Mo-N bonding generated deep-level subgap states into the bandgap, which led to a higher probability of photoexcitation. Therefore, the MoS2 TFT with a nitrocellulose passivation layer exhibited 202.35 A/W enhanced photoresponsivity, 1.83 × 103 photosensitivity, and 9.94 × 109 Jones detectivity under 635 nm light at 10 mW/mm2.

Original languageEnglish
Pages (from-to)123-130
Number of pages8
JournalJournal of Information Display
Volume21
Issue number2
DOIs
Publication statusPublished - 2020 Apr 2

Bibliographical note

Funding Information:
This work was supported by the Ministry of Trade, Industry, and Energy (MOTIE) and Korea Evaluation Institute of Industrial Technology (KEIT) through the Industrial Strategic Technology Development Program [No. 10079571].

Publisher Copyright:
© 2020, © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the Korean Information Display Society.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Improvement of the stability and optoelectronic characteristics of molybdenum disulfide thin-film transistors by applying a nitrocellulose passivation layer'. Together they form a unique fingerprint.

Cite this