Improving the Analytical Performance of Graphene Oxide towards the Assessment of Polyphenols

Kai Hwee Hui, Adriano Ambrosi, Martin Pumera, Alessandra Bonanni

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)


The presence of oxygen functionalities on graphene surface has enormous influence on its electrochemical and electroanalytical properties. The oxygen-containing groups on graphene platforms can strongly affect the electrochemical response, being either detrimental for the heterogeneous charge transfer or promoting a favourable interaction with the specific analyte. In this study, by electrochemically reducing graphene oxide material at increasing negative potentials (from -0.25 to -1.50 V) we obtained eight electrochemically reduced graphene oxide (ERGO) platforms carrying a decreasing amount of oxygen functionalities. Subsequently, we analysed the electroanalytical response of each ERGO material for the detection of gallic acid, a standard polyphenol that is correlated to the antioxidant activity of food and beverages. The graphene platform providing the best electroanalytical performance in terms of sensitivity, selectivity and linearity of response was then employed for the analysis of commercial fruit juice samples. Herein we demonstrated that graphene materials can be electrochemically tuned to optimise their electrochemical response towards the detection of biologically important analytes.

Original languageEnglish
Pages (from-to)3830-3834
Number of pages5
JournalChemistry - A European Journal
Issue number11
Publication statusPublished - 2016 Mar 7

Bibliographical note

Funding Information:
A.B. acknowledges Nanyang Technological University for the financial support. M.P. acknowledges Singapore Ministry of Education Academic Research Fund AcRF Tier 1 (2013-T1-001-014, RGT1/13) for the funding.

Publisher Copyright:
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Organic Chemistry


Dive into the research topics of 'Improving the Analytical Performance of Graphene Oxide towards the Assessment of Polyphenols'. Together they form a unique fingerprint.

Cite this