In-Plane Deformation Mechanics for Highly Stretchable Electronics

Yewang Su, Xuecheng Ping, Ki Jun Yu, Jung Woo Lee, Jonathan A. Fan, Bo Wang, Ming Li, Rui Li, Daniel V. Harburg, Yong An Huang, Cunjiang Yu, Shimin Mao, Jaehoun Shim, Qinglin Yang, Pei Yin Lee, Agne Armonas, Ki Joong Choi, Yichen Yang, Ungyu Paik, Tammy ChangThomas J. Dawidczyk, Yonggang Huang, Shuodao Wang, John A. Rogers

Research output: Contribution to journalArticle

66 Citations (Scopus)

Abstract

A different route to stretchable structures in which thick bar geometries replace thin ribbon layouts to yield scissor-like deformations instead of in- or out-of-plane buckling modes was studied. The findings demonstrate that scissor-like mechanics represents an important design approach that can complement previously reported schemes in stretchable electronics, where high elastic stretchability, high areal coverages of active devices, and high electric performance can be achieved simultaneously. More generally, systematic studies involving experimental work, FEA and analytical theory reveal three different deformation modes, wrinkling, buckling and scissoring, for serpentine structures of hard materials on soft elastomeric substrates. For otherwise comparable designs, the elastic stretchability in the scissoring regime is much higher than that in other two regimes. Analytical studies of these designs identify key geometric parameters that govern the elastic stretchability and yield optimal values for metallic serpentine interconnects that reach levels of stretchability up to 350%, roughly six times larger than previously reported values when prestrain is not applied. The scissoring physics depends only on the thickness/width aspect ratio, and the stretchability is reversely proportional to the width. As a result, designs that involve thin interconnects with comparable (small) widths represent optimal options to achieve both large stretchability and large flexibility. The scissoring design also provides low electrical resistance and efficient heat dissipation in interconnect structures due to their thick geometries.

Original languageEnglish
Article number1604989
JournalAdvanced Materials
Volume29
Issue number8
DOIs
Publication statusPublished - 2017 Jan 1

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

Su, Y., Ping, X., Yu, K. J., Lee, J. W., Fan, J. A., Wang, B., Li, M., Li, R., Harburg, D. V., Huang, Y. A., Yu, C., Mao, S., Shim, J., Yang, Q., Lee, P. Y., Armonas, A., Choi, K. J., Yang, Y., Paik, U., ... Rogers, J. A. (2017). In-Plane Deformation Mechanics for Highly Stretchable Electronics. Advanced Materials, 29(8), [1604989]. https://doi.org/10.1002/adma.201604989