TY - JOUR
T1 - In Vivo Evaluation of Commercially Available Gel-Type Polyethylene Glycol Membrane for Carrier of Recombinant Human Bone Morphogenetic Protein-2
AU - Jang, Ji Woong
AU - Lee, Jung Seok
AU - Jung, Ui Won
AU - Kim, Chang Sung
AU - Cho, Kyoo Sung
N1 - Publisher Copyright:
© 2016 American Association of Oral and Maxillofacial Surgeons
PY - 2017/2/1
Y1 - 2017/2/1
N2 - Purpose This study evaluated a commercially available, 3-dimensional gel-type polyethylene glycol (PEG) membrane as a carrier for recombinant human bone morphogenetic protein-2 (rhBMP-2) using a rat calvarial defect model. Another gel-type carrier, fibrin-fibronectin system (FFS), was used as a positive control. Materials and Methods Critical-size defects were made in the rat calvarium, which were allocated to 1 of 10 groups comprising 2 healing periods and biomaterial conditions: 1) sham control, 2) FFS only, 3) FFS plus BMP-2, 4) PEG only, and 5) PEG plus BMP-2. Radiographic and histologic analyses were performed at 2 and 8 weeks after surgery. Results After 2 weeks, some parts of the FFS were biodegraded and extensive cellular infiltration was observed at sites that received FFS or FFS plus BMP-2. The PEG membrane retained its augmented volume without cellular infiltration at sites that received PEG or PEG plus BMP-2. After 8 weeks, the FFS was completely degraded and replaced by new bone and connective tissues. In contrast, the volume of residual PEG was similar to that at 2 weeks, with slight cellular infiltration. In particular, there was progressive bone regeneration around micro-cracks and resorbed outer surface in the PEG + BMP-2 group. Although the PEG + BMP-2 group showed increased area and percentage of new bone, there was no statistical relevance after 2 and 8 weeks in histomorphometric analyses. However, the appearance of the healing differed (with new bone formation along micro-cracks in the PEG + BMP-2 group), and further studies with longer healing periods are needed to draw conclusions about clinical applications. Conclusion Evidence of mechanical stability and new bone formation along micro-cracks when using PEG plus BMP-2 might support the PEG membrane as a candidate carrier material for rhBMP-2.
AB - Purpose This study evaluated a commercially available, 3-dimensional gel-type polyethylene glycol (PEG) membrane as a carrier for recombinant human bone morphogenetic protein-2 (rhBMP-2) using a rat calvarial defect model. Another gel-type carrier, fibrin-fibronectin system (FFS), was used as a positive control. Materials and Methods Critical-size defects were made in the rat calvarium, which were allocated to 1 of 10 groups comprising 2 healing periods and biomaterial conditions: 1) sham control, 2) FFS only, 3) FFS plus BMP-2, 4) PEG only, and 5) PEG plus BMP-2. Radiographic and histologic analyses were performed at 2 and 8 weeks after surgery. Results After 2 weeks, some parts of the FFS were biodegraded and extensive cellular infiltration was observed at sites that received FFS or FFS plus BMP-2. The PEG membrane retained its augmented volume without cellular infiltration at sites that received PEG or PEG plus BMP-2. After 8 weeks, the FFS was completely degraded and replaced by new bone and connective tissues. In contrast, the volume of residual PEG was similar to that at 2 weeks, with slight cellular infiltration. In particular, there was progressive bone regeneration around micro-cracks and resorbed outer surface in the PEG + BMP-2 group. Although the PEG + BMP-2 group showed increased area and percentage of new bone, there was no statistical relevance after 2 and 8 weeks in histomorphometric analyses. However, the appearance of the healing differed (with new bone formation along micro-cracks in the PEG + BMP-2 group), and further studies with longer healing periods are needed to draw conclusions about clinical applications. Conclusion Evidence of mechanical stability and new bone formation along micro-cracks when using PEG plus BMP-2 might support the PEG membrane as a candidate carrier material for rhBMP-2.
UR - http://www.scopus.com/inward/record.url?scp=85007518177&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85007518177&partnerID=8YFLogxK
U2 - 10.1016/j.joms.2016.05.004
DO - 10.1016/j.joms.2016.05.004
M3 - Article
C2 - 27288839
AN - SCOPUS:85007518177
SN - 0278-2391
VL - 75
SP - 297.e1-297.e13
JO - Journal of Oral and Maxillofacial Surgery
JF - Journal of Oral and Maxillofacial Surgery
IS - 2
ER -