Inactivation efficiency and mechanism of UV-TiO2 photocatalysis against murine norovirus using a solidified agar matrix

Daseul Park, Hafiz Muhammad Shahbaz, Sun Hyoung Kim, Mijin Lee, Wooseong Lee, Jong-Won Oh, Dong Un Lee, Jiyong Park

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Human norovirus (HuNoV) is the primary cause of viral gastroenteritis worldwide. Fresh blueberries are among high risk foods associated with norovirus related outbreaks. Therefore, it is important to assess intervention strategies to reduce the risk of foodborne illness. The disinfection efficiency of decontamination methods is difficult to evaluate for fruits and vegetables due to an inconsistent degree of contamination and irregular surface characteristics. The inactivation efficiency and mechanism of murine norovirus 1 (MNV-1, a surrogate for HuNoV) was studied on an experimentally prepared solidified agar matrix (SAM) to simulate blueberries using different wavelengths (A, B, C) of UV light both with and without TiO2 photocatalysis (TP). MNV-1 was inoculated on exterior and interior of SAM and inactivation efficiencies of different treatments were investigated using a number of assays. Initial inoculum levels of MNV-1 on the SAM surface and interior were 5.2 log PFU/mL. UVC with TiO2 (UVC-TP) achieved the highest level of viral reduction for both externally inoculated and internalized MNV-1. Externally inoculated MNV-1 was reduced to non-detectable levels after UVC-TP treatment for 5 min while there was still a 0.9 log viral titer after UVC alone. For internalized MNV-1, 3.2 log and 2.7 log reductions were obtained with UVC-TP and UVC alone treatments for 10 min, respectively. The Weibull model was applied to describe the inactivation behavior of MNV-1, and the model showed a good fit to the data. An excellent correlation between the steady-state concentration of OH radicals ([[rad]OH]ss) and viral inactivation was quantified using a para–chlorobenzoic acid (pCBA) probe compound, suggesting that OH radicals produced in the UV-TP reaction were the major species for MNV-1 inactivation. Transmission electron microscopy images showed that the structure of viral particles was completely disrupted with UVC-TP and UVC alone. SDS-PAGE analysis showed that the major capsid protein VP1 was degraded after UVC-TP and UVC alone. Real-time RT-qPCR analysis showed that UVC-TP and UVC alone caused a reduction in the level of viral genomic RNA. Propidium monoazide (PMA) pretreatment RT-qPCR analysis showed that UVC-TP caused damage to the viral capsid protein in addition to viral genomic RNA. UVC both with and without TiO2 was more effective for MNV-1 inactivation than UVB and UVA. Thus, UVC-TP disinfection aimed to reduce levels of food-borne viruses can inactivate viruses present on the surface and internalized in the interior of blueberries.

Original languageEnglish
Pages (from-to)256-264
Number of pages9
JournalInternational Journal of Food Microbiology
Volume238
DOIs
Publication statusPublished - 2016 Dec 5

Fingerprint

Norovirus
Blueberry Plants
Agar
inactivation
agar
Disinfection
mice
Viral RNA
Capsid Proteins
Virus Inactivation
Viruses
blueberries
Food
Foodborne Diseases
Decontamination
Gastroenteritis
Viral Proteins
Ultraviolet Rays
Transmission Electron Microscopy
Vegetables

All Science Journal Classification (ASJC) codes

  • Food Science
  • Microbiology

Cite this

Park, Daseul ; Shahbaz, Hafiz Muhammad ; Kim, Sun Hyoung ; Lee, Mijin ; Lee, Wooseong ; Oh, Jong-Won ; Lee, Dong Un ; Park, Jiyong. / Inactivation efficiency and mechanism of UV-TiO2 photocatalysis against murine norovirus using a solidified agar matrix. In: International Journal of Food Microbiology. 2016 ; Vol. 238. pp. 256-264.
@article{b5f079e8ae774496b19d840938279662,
title = "Inactivation efficiency and mechanism of UV-TiO2 photocatalysis against murine norovirus using a solidified agar matrix",
abstract = "Human norovirus (HuNoV) is the primary cause of viral gastroenteritis worldwide. Fresh blueberries are among high risk foods associated with norovirus related outbreaks. Therefore, it is important to assess intervention strategies to reduce the risk of foodborne illness. The disinfection efficiency of decontamination methods is difficult to evaluate for fruits and vegetables due to an inconsistent degree of contamination and irregular surface characteristics. The inactivation efficiency and mechanism of murine norovirus 1 (MNV-1, a surrogate for HuNoV) was studied on an experimentally prepared solidified agar matrix (SAM) to simulate blueberries using different wavelengths (A, B, C) of UV light both with and without TiO2 photocatalysis (TP). MNV-1 was inoculated on exterior and interior of SAM and inactivation efficiencies of different treatments were investigated using a number of assays. Initial inoculum levels of MNV-1 on the SAM surface and interior were 5.2 log PFU/mL. UVC with TiO2 (UVC-TP) achieved the highest level of viral reduction for both externally inoculated and internalized MNV-1. Externally inoculated MNV-1 was reduced to non-detectable levels after UVC-TP treatment for 5 min while there was still a 0.9 log viral titer after UVC alone. For internalized MNV-1, 3.2 log and 2.7 log reductions were obtained with UVC-TP and UVC alone treatments for 10 min, respectively. The Weibull model was applied to describe the inactivation behavior of MNV-1, and the model showed a good fit to the data. An excellent correlation between the steady-state concentration of OH radicals ([[rad]OH]ss) and viral inactivation was quantified using a para–chlorobenzoic acid (pCBA) probe compound, suggesting that OH radicals produced in the UV-TP reaction were the major species for MNV-1 inactivation. Transmission electron microscopy images showed that the structure of viral particles was completely disrupted with UVC-TP and UVC alone. SDS-PAGE analysis showed that the major capsid protein VP1 was degraded after UVC-TP and UVC alone. Real-time RT-qPCR analysis showed that UVC-TP and UVC alone caused a reduction in the level of viral genomic RNA. Propidium monoazide (PMA) pretreatment RT-qPCR analysis showed that UVC-TP caused damage to the viral capsid protein in addition to viral genomic RNA. UVC both with and without TiO2 was more effective for MNV-1 inactivation than UVB and UVA. Thus, UVC-TP disinfection aimed to reduce levels of food-borne viruses can inactivate viruses present on the surface and internalized in the interior of blueberries.",
author = "Daseul Park and Shahbaz, {Hafiz Muhammad} and Kim, {Sun Hyoung} and Mijin Lee and Wooseong Lee and Jong-Won Oh and Lee, {Dong Un} and Jiyong Park",
year = "2016",
month = "12",
day = "5",
doi = "10.1016/j.ijfoodmicro.2016.09.025",
language = "English",
volume = "238",
pages = "256--264",
journal = "International Journal of Food Microbiology",
issn = "0168-1605",
publisher = "Elsevier",

}

Inactivation efficiency and mechanism of UV-TiO2 photocatalysis against murine norovirus using a solidified agar matrix. / Park, Daseul; Shahbaz, Hafiz Muhammad; Kim, Sun Hyoung; Lee, Mijin; Lee, Wooseong; Oh, Jong-Won; Lee, Dong Un; Park, Jiyong.

In: International Journal of Food Microbiology, Vol. 238, 05.12.2016, p. 256-264.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Inactivation efficiency and mechanism of UV-TiO2 photocatalysis against murine norovirus using a solidified agar matrix

AU - Park, Daseul

AU - Shahbaz, Hafiz Muhammad

AU - Kim, Sun Hyoung

AU - Lee, Mijin

AU - Lee, Wooseong

AU - Oh, Jong-Won

AU - Lee, Dong Un

AU - Park, Jiyong

PY - 2016/12/5

Y1 - 2016/12/5

N2 - Human norovirus (HuNoV) is the primary cause of viral gastroenteritis worldwide. Fresh blueberries are among high risk foods associated with norovirus related outbreaks. Therefore, it is important to assess intervention strategies to reduce the risk of foodborne illness. The disinfection efficiency of decontamination methods is difficult to evaluate for fruits and vegetables due to an inconsistent degree of contamination and irregular surface characteristics. The inactivation efficiency and mechanism of murine norovirus 1 (MNV-1, a surrogate for HuNoV) was studied on an experimentally prepared solidified agar matrix (SAM) to simulate blueberries using different wavelengths (A, B, C) of UV light both with and without TiO2 photocatalysis (TP). MNV-1 was inoculated on exterior and interior of SAM and inactivation efficiencies of different treatments were investigated using a number of assays. Initial inoculum levels of MNV-1 on the SAM surface and interior were 5.2 log PFU/mL. UVC with TiO2 (UVC-TP) achieved the highest level of viral reduction for both externally inoculated and internalized MNV-1. Externally inoculated MNV-1 was reduced to non-detectable levels after UVC-TP treatment for 5 min while there was still a 0.9 log viral titer after UVC alone. For internalized MNV-1, 3.2 log and 2.7 log reductions were obtained with UVC-TP and UVC alone treatments for 10 min, respectively. The Weibull model was applied to describe the inactivation behavior of MNV-1, and the model showed a good fit to the data. An excellent correlation between the steady-state concentration of OH radicals ([[rad]OH]ss) and viral inactivation was quantified using a para–chlorobenzoic acid (pCBA) probe compound, suggesting that OH radicals produced in the UV-TP reaction were the major species for MNV-1 inactivation. Transmission electron microscopy images showed that the structure of viral particles was completely disrupted with UVC-TP and UVC alone. SDS-PAGE analysis showed that the major capsid protein VP1 was degraded after UVC-TP and UVC alone. Real-time RT-qPCR analysis showed that UVC-TP and UVC alone caused a reduction in the level of viral genomic RNA. Propidium monoazide (PMA) pretreatment RT-qPCR analysis showed that UVC-TP caused damage to the viral capsid protein in addition to viral genomic RNA. UVC both with and without TiO2 was more effective for MNV-1 inactivation than UVB and UVA. Thus, UVC-TP disinfection aimed to reduce levels of food-borne viruses can inactivate viruses present on the surface and internalized in the interior of blueberries.

AB - Human norovirus (HuNoV) is the primary cause of viral gastroenteritis worldwide. Fresh blueberries are among high risk foods associated with norovirus related outbreaks. Therefore, it is important to assess intervention strategies to reduce the risk of foodborne illness. The disinfection efficiency of decontamination methods is difficult to evaluate for fruits and vegetables due to an inconsistent degree of contamination and irregular surface characteristics. The inactivation efficiency and mechanism of murine norovirus 1 (MNV-1, a surrogate for HuNoV) was studied on an experimentally prepared solidified agar matrix (SAM) to simulate blueberries using different wavelengths (A, B, C) of UV light both with and without TiO2 photocatalysis (TP). MNV-1 was inoculated on exterior and interior of SAM and inactivation efficiencies of different treatments were investigated using a number of assays. Initial inoculum levels of MNV-1 on the SAM surface and interior were 5.2 log PFU/mL. UVC with TiO2 (UVC-TP) achieved the highest level of viral reduction for both externally inoculated and internalized MNV-1. Externally inoculated MNV-1 was reduced to non-detectable levels after UVC-TP treatment for 5 min while there was still a 0.9 log viral titer after UVC alone. For internalized MNV-1, 3.2 log and 2.7 log reductions were obtained with UVC-TP and UVC alone treatments for 10 min, respectively. The Weibull model was applied to describe the inactivation behavior of MNV-1, and the model showed a good fit to the data. An excellent correlation between the steady-state concentration of OH radicals ([[rad]OH]ss) and viral inactivation was quantified using a para–chlorobenzoic acid (pCBA) probe compound, suggesting that OH radicals produced in the UV-TP reaction were the major species for MNV-1 inactivation. Transmission electron microscopy images showed that the structure of viral particles was completely disrupted with UVC-TP and UVC alone. SDS-PAGE analysis showed that the major capsid protein VP1 was degraded after UVC-TP and UVC alone. Real-time RT-qPCR analysis showed that UVC-TP and UVC alone caused a reduction in the level of viral genomic RNA. Propidium monoazide (PMA) pretreatment RT-qPCR analysis showed that UVC-TP caused damage to the viral capsid protein in addition to viral genomic RNA. UVC both with and without TiO2 was more effective for MNV-1 inactivation than UVB and UVA. Thus, UVC-TP disinfection aimed to reduce levels of food-borne viruses can inactivate viruses present on the surface and internalized in the interior of blueberries.

UR - http://www.scopus.com/inward/record.url?scp=84989968009&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84989968009&partnerID=8YFLogxK

U2 - 10.1016/j.ijfoodmicro.2016.09.025

DO - 10.1016/j.ijfoodmicro.2016.09.025

M3 - Article

VL - 238

SP - 256

EP - 264

JO - International Journal of Food Microbiology

JF - International Journal of Food Microbiology

SN - 0168-1605

ER -