Incremental face recognition for large-scale social network services

Kwontaeg Choi, Kar Ann Toh, Hyeran Byun

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

Due to the rapid growth of social network services such as Facebook and Twitter, incorporation of face recognition in these large-scale web services is attracting much attention in both academia and industry. The major problem in such applications is to deal efficiently with the growing number of samples as well as local appearance variations caused by diverse environments for the millions of users over time. In this paper, we focus on developing an incremental face recognition method for Twitter application. Particularly, a data-independent feature extraction method is proposed via binarization of a Gabor filter. Subsequently, the dimension of our Gabor representation is reduced considering various orientations at different grid positions. Finally, an incremental neural network is applied to learn the reduced Gabor features. We apply our method to a novel application which notifies new photograph uploading to related users without having their ID being identified. Our extensive experiments show that the proposed algorithm significantly outperforms several incremental face recognition methods with a dramatic reduction in computational speed. This shows the suitability of the proposed method for a large-scale web service with millions of users.

Original languageEnglish
Pages (from-to)2868-2883
Number of pages16
JournalPattern Recognition
Volume45
Issue number8
DOIs
Publication statusPublished - 2012 Aug

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Computer Vision and Pattern Recognition
  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Incremental face recognition for large-scale social network services'. Together they form a unique fingerprint.

  • Cite this