Indoor cooling/heating load analysis based on coupled simulation of convection, radiation and HVAC control

Taeyeon Kim, Shinsuke Kato, Shuzo Murakami

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

A computational fluid dynamics (CFD) simulation for analyzing indoor cooling/heating load is presented in this study. It is coupled with a radiative heat transfer simulation and heating, ventilating, and air-conditioning (HVAC) controlling system in a room. This new method feeds back the outputs of the HVAC system control to the input boundary conditions of the CFD, and this method includes a human model to evaluate the thermal environment. It would be used to analyzed the heating/cooling loads of different HVAC systems under the condition of the same human thermal sensation (e.g. PMV, operative temperature, etc.) even though the temperature and air-velocity distribution in the room are different from each other. To examine the performance of the new method, a cooling load and a thermal environment within a semi-enclosed space, which opens into an atrium space, is analyzed under the steady-state conditions during the summer season. This method is able to analyze the indoor cooling load with changes of target thermal environments of a room and/or changing clothing conditions of occupants considering the temperature and air-velocity distribution in the room. In this paper, two types of HVAC system are compared; i.e. radiation-panel system and all-air cooling system. The radiation-panel cooling system is found to be more energy efficient for cooling the semi-enclosed space. Changes of the level of thermal environment reduce cooling load effectively in case of the all-air cooling system while the radiation-panel system does not reduce cooling load even though the targeted thermal condition is relaxed. Energy saving effect is expected by easing the clothing conditions of occupants. In this study, the reducing effect of cooling load is quantitatively evaluated with clothing conditions also.

Original languageEnglish
Pages (from-to)901-908
Number of pages8
JournalBuilding and Environment
Volume36
Issue number7
DOIs
Publication statusPublished - 2001 Aug

Fingerprint

air conditioning
heat pump
conditioning
Air conditioning
convection
air
Cooling
heating
cooling
Radiation
Heating
simulation
clothing
Cooling systems
Air
Velocity distribution
Computational fluid dynamics
computational fluid dynamics
system control
Convection

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Civil and Structural Engineering
  • Geography, Planning and Development
  • Building and Construction

Cite this

@article{bd3fc3e22a6d4c61b2c3396767a19664,
title = "Indoor cooling/heating load analysis based on coupled simulation of convection, radiation and HVAC control",
abstract = "A computational fluid dynamics (CFD) simulation for analyzing indoor cooling/heating load is presented in this study. It is coupled with a radiative heat transfer simulation and heating, ventilating, and air-conditioning (HVAC) controlling system in a room. This new method feeds back the outputs of the HVAC system control to the input boundary conditions of the CFD, and this method includes a human model to evaluate the thermal environment. It would be used to analyzed the heating/cooling loads of different HVAC systems under the condition of the same human thermal sensation (e.g. PMV, operative temperature, etc.) even though the temperature and air-velocity distribution in the room are different from each other. To examine the performance of the new method, a cooling load and a thermal environment within a semi-enclosed space, which opens into an atrium space, is analyzed under the steady-state conditions during the summer season. This method is able to analyze the indoor cooling load with changes of target thermal environments of a room and/or changing clothing conditions of occupants considering the temperature and air-velocity distribution in the room. In this paper, two types of HVAC system are compared; i.e. radiation-panel system and all-air cooling system. The radiation-panel cooling system is found to be more energy efficient for cooling the semi-enclosed space. Changes of the level of thermal environment reduce cooling load effectively in case of the all-air cooling system while the radiation-panel system does not reduce cooling load even though the targeted thermal condition is relaxed. Energy saving effect is expected by easing the clothing conditions of occupants. In this study, the reducing effect of cooling load is quantitatively evaluated with clothing conditions also.",
author = "Taeyeon Kim and Shinsuke Kato and Shuzo Murakami",
year = "2001",
month = "8",
doi = "10.1016/S0360-1323(01)00016-6",
language = "English",
volume = "36",
pages = "901--908",
journal = "Building and Environment",
issn = "0360-1323",
publisher = "Elsevier BV",
number = "7",

}

Indoor cooling/heating load analysis based on coupled simulation of convection, radiation and HVAC control. / Kim, Taeyeon; Kato, Shinsuke; Murakami, Shuzo.

In: Building and Environment, Vol. 36, No. 7, 08.2001, p. 901-908.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Indoor cooling/heating load analysis based on coupled simulation of convection, radiation and HVAC control

AU - Kim, Taeyeon

AU - Kato, Shinsuke

AU - Murakami, Shuzo

PY - 2001/8

Y1 - 2001/8

N2 - A computational fluid dynamics (CFD) simulation for analyzing indoor cooling/heating load is presented in this study. It is coupled with a radiative heat transfer simulation and heating, ventilating, and air-conditioning (HVAC) controlling system in a room. This new method feeds back the outputs of the HVAC system control to the input boundary conditions of the CFD, and this method includes a human model to evaluate the thermal environment. It would be used to analyzed the heating/cooling loads of different HVAC systems under the condition of the same human thermal sensation (e.g. PMV, operative temperature, etc.) even though the temperature and air-velocity distribution in the room are different from each other. To examine the performance of the new method, a cooling load and a thermal environment within a semi-enclosed space, which opens into an atrium space, is analyzed under the steady-state conditions during the summer season. This method is able to analyze the indoor cooling load with changes of target thermal environments of a room and/or changing clothing conditions of occupants considering the temperature and air-velocity distribution in the room. In this paper, two types of HVAC system are compared; i.e. radiation-panel system and all-air cooling system. The radiation-panel cooling system is found to be more energy efficient for cooling the semi-enclosed space. Changes of the level of thermal environment reduce cooling load effectively in case of the all-air cooling system while the radiation-panel system does not reduce cooling load even though the targeted thermal condition is relaxed. Energy saving effect is expected by easing the clothing conditions of occupants. In this study, the reducing effect of cooling load is quantitatively evaluated with clothing conditions also.

AB - A computational fluid dynamics (CFD) simulation for analyzing indoor cooling/heating load is presented in this study. It is coupled with a radiative heat transfer simulation and heating, ventilating, and air-conditioning (HVAC) controlling system in a room. This new method feeds back the outputs of the HVAC system control to the input boundary conditions of the CFD, and this method includes a human model to evaluate the thermal environment. It would be used to analyzed the heating/cooling loads of different HVAC systems under the condition of the same human thermal sensation (e.g. PMV, operative temperature, etc.) even though the temperature and air-velocity distribution in the room are different from each other. To examine the performance of the new method, a cooling load and a thermal environment within a semi-enclosed space, which opens into an atrium space, is analyzed under the steady-state conditions during the summer season. This method is able to analyze the indoor cooling load with changes of target thermal environments of a room and/or changing clothing conditions of occupants considering the temperature and air-velocity distribution in the room. In this paper, two types of HVAC system are compared; i.e. radiation-panel system and all-air cooling system. The radiation-panel cooling system is found to be more energy efficient for cooling the semi-enclosed space. Changes of the level of thermal environment reduce cooling load effectively in case of the all-air cooling system while the radiation-panel system does not reduce cooling load even though the targeted thermal condition is relaxed. Energy saving effect is expected by easing the clothing conditions of occupants. In this study, the reducing effect of cooling load is quantitatively evaluated with clothing conditions also.

UR - http://www.scopus.com/inward/record.url?scp=0035427068&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035427068&partnerID=8YFLogxK

U2 - 10.1016/S0360-1323(01)00016-6

DO - 10.1016/S0360-1323(01)00016-6

M3 - Article

AN - SCOPUS:0035427068

VL - 36

SP - 901

EP - 908

JO - Building and Environment

JF - Building and Environment

SN - 0360-1323

IS - 7

ER -