Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis

Heoung Jae Chun, Ha Shik Shin, Chong Hyun Han, Soo-Hong Lee

Research output: Contribution to journalArticle

79 Citations (Scopus)

Abstract

Purpose: The purpose of this study was to investigate the effect of 3 different abutment types on the stress distribution in bone with inclined loads using finite element analysis. Materials and Methods: The 1-body, internal-hex, and external-hex implant systems were modeled to study the effect of abutment type on stress distribution in bone. The bone model used in this study comprised compact and spongious bone assumed to be homogeneous, isotropic, and linearly elastic. Results: In the case of the 1-piece implant, the load was transferred evenly not only in the implant system but also in bone. However, the maximum Von Mises stress generated in bone with the 1-piece implant was always higher than that generated with the internal-hex implant, regardless of load angle inclination. In the case of the internal-hex implant, the contact condition with friction between abutment and implant in the tapered joints and at abutment neck reduced the effect of bending caused by horizontal component of inclined load. The maximum Von Mises stress in bone was the highest for the external-hex implant. Discussion: It was found that the internal-hex implant system generated the lowest maximum Von Mises stresses for all loading conditions because of reduction of the bending effect by sliding in the tapered joints between the implant and abutment. Conclusions: It was concluded that abutment type has significant influence on the stress distribution in bone because of different load transfer mechanisms and the differences in size of the contact area between the abutment and implant.

Original languageEnglish
Pages (from-to)195-202
Number of pages8
JournalInternational Journal of Oral and Maxillofacial Implants
Volume21
Issue number2
Publication statusPublished - 2006 Mar 1

Fingerprint

Finite Element Analysis
Bone and Bones
Joints
Friction
Neck

All Science Journal Classification (ASJC) codes

  • Dentistry(all)

Cite this

@article{544d15bcbfb9407687f5b46471e02538,
title = "Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis",
abstract = "Purpose: The purpose of this study was to investigate the effect of 3 different abutment types on the stress distribution in bone with inclined loads using finite element analysis. Materials and Methods: The 1-body, internal-hex, and external-hex implant systems were modeled to study the effect of abutment type on stress distribution in bone. The bone model used in this study comprised compact and spongious bone assumed to be homogeneous, isotropic, and linearly elastic. Results: In the case of the 1-piece implant, the load was transferred evenly not only in the implant system but also in bone. However, the maximum Von Mises stress generated in bone with the 1-piece implant was always higher than that generated with the internal-hex implant, regardless of load angle inclination. In the case of the internal-hex implant, the contact condition with friction between abutment and implant in the tapered joints and at abutment neck reduced the effect of bending caused by horizontal component of inclined load. The maximum Von Mises stress in bone was the highest for the external-hex implant. Discussion: It was found that the internal-hex implant system generated the lowest maximum Von Mises stresses for all loading conditions because of reduction of the bending effect by sliding in the tapered joints between the implant and abutment. Conclusions: It was concluded that abutment type has significant influence on the stress distribution in bone because of different load transfer mechanisms and the differences in size of the contact area between the abutment and implant.",
author = "Chun, {Heoung Jae} and Shin, {Ha Shik} and Han, {Chong Hyun} and Soo-Hong Lee",
year = "2006",
month = "3",
day = "1",
language = "English",
volume = "21",
pages = "195--202",
journal = "International Journal of Oral and Maxillofacial Implants",
issn = "0882-2786",
publisher = "Quintessence Publishing Company",
number = "2",

}

TY - JOUR

T1 - Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis

AU - Chun, Heoung Jae

AU - Shin, Ha Shik

AU - Han, Chong Hyun

AU - Lee, Soo-Hong

PY - 2006/3/1

Y1 - 2006/3/1

N2 - Purpose: The purpose of this study was to investigate the effect of 3 different abutment types on the stress distribution in bone with inclined loads using finite element analysis. Materials and Methods: The 1-body, internal-hex, and external-hex implant systems were modeled to study the effect of abutment type on stress distribution in bone. The bone model used in this study comprised compact and spongious bone assumed to be homogeneous, isotropic, and linearly elastic. Results: In the case of the 1-piece implant, the load was transferred evenly not only in the implant system but also in bone. However, the maximum Von Mises stress generated in bone with the 1-piece implant was always higher than that generated with the internal-hex implant, regardless of load angle inclination. In the case of the internal-hex implant, the contact condition with friction between abutment and implant in the tapered joints and at abutment neck reduced the effect of bending caused by horizontal component of inclined load. The maximum Von Mises stress in bone was the highest for the external-hex implant. Discussion: It was found that the internal-hex implant system generated the lowest maximum Von Mises stresses for all loading conditions because of reduction of the bending effect by sliding in the tapered joints between the implant and abutment. Conclusions: It was concluded that abutment type has significant influence on the stress distribution in bone because of different load transfer mechanisms and the differences in size of the contact area between the abutment and implant.

AB - Purpose: The purpose of this study was to investigate the effect of 3 different abutment types on the stress distribution in bone with inclined loads using finite element analysis. Materials and Methods: The 1-body, internal-hex, and external-hex implant systems were modeled to study the effect of abutment type on stress distribution in bone. The bone model used in this study comprised compact and spongious bone assumed to be homogeneous, isotropic, and linearly elastic. Results: In the case of the 1-piece implant, the load was transferred evenly not only in the implant system but also in bone. However, the maximum Von Mises stress generated in bone with the 1-piece implant was always higher than that generated with the internal-hex implant, regardless of load angle inclination. In the case of the internal-hex implant, the contact condition with friction between abutment and implant in the tapered joints and at abutment neck reduced the effect of bending caused by horizontal component of inclined load. The maximum Von Mises stress in bone was the highest for the external-hex implant. Discussion: It was found that the internal-hex implant system generated the lowest maximum Von Mises stresses for all loading conditions because of reduction of the bending effect by sliding in the tapered joints between the implant and abutment. Conclusions: It was concluded that abutment type has significant influence on the stress distribution in bone because of different load transfer mechanisms and the differences in size of the contact area between the abutment and implant.

UR - http://www.scopus.com/inward/record.url?scp=33646232732&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646232732&partnerID=8YFLogxK

M3 - Article

VL - 21

SP - 195

EP - 202

JO - International Journal of Oral and Maxillofacial Implants

JF - International Journal of Oral and Maxillofacial Implants

SN - 0882-2786

IS - 2

ER -