Influence of the Asian monsoon on net ecosystem carbon exchange in two major ecosystems in Korea

H. Kwon, J. Kim, J. Hong, J. H. Lim

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Considering the feedback in radiation, temperature, and soil moisture with alterations in rainfall patterns, the influence of the changing monsoon on Net Ecosystem CO2 Exchange (NEE) can be critical to the estimation of carbon balance in Asia. In this paper, we examined CO2 fluxes measured by the eddy covariance method from 2004 to 2008 in two major ecosystems in the KoFlux sites in Korea, i.e., the Gwangneung Deciduous forest (GDK) and the Haenam Farmland (HFK). Our objectives were to identify the repeatability of the mid-season depression of NEE encountered at the two sites based on the single-year observation, and to further scrutinize its cause, effect, and interannual variability by using multi-year observations. In both GDK and HFK sites, the mid-season depression of NEE was reproduced each year but with different timing, magnitude, and mechanism. At the GDK site, a predominant factor causing the mid-season depression was a decreased solar radiation and the consequent reduction in Gross Primary Productivity (GPP) during the summer monsoon period. At the HFK site, however, the monsoonal effect was less pronounced and the apparent mid-season depression was mainly a result of the management practices such as cultivation of spring barley and rice transplantation. Other flux observation sites in East Asia also showed a decline in radiation but with a lesser degree during the monsoon season, resulting in less pronounced depression in NEE. In our study, the observed depressions in NEE caused both GDK and HFK sites to become a weaker carbon sink or even a source in the middle of the growing season. On average, the GDK site (with maximum leaf area index of ∼5) was a weak carbon sink with NEE of-84 gC m-2 y-1. Despite about 20% larger GPP (of 1321 gC m-2y -1) in comparison with the GDK site, the HFK site (with maximum leaf area index of 3-4) was a weaker carbon sink with NEE of-58 gC m-2 y-1 because of greater ecosystem respiration (of 1263 gC m -2 y-1). These NEE values were near the low end of the ranges reported in the literature for similar ecosystems in mid-latitudes. With the projected trends of the extended length of monsoon with more intensive rainfalls in East Asia, the observed delicate coupling between carbon and hydrological cycles may turn these key ecosystems into carbon neutral.

Original languageEnglish
Pages (from-to)1493-1504
Number of pages12
JournalBiogeosciences
Volume7
Issue number5
DOIs
Publication statusPublished - 2010 Dec 1

Fingerprint

Korean Peninsula
monsoon
ecosystems
carbon
ecosystem
carbon sink
carbon sinks
East Asia
leaf area index
primary productivity
rain
ecosystem respiration
monsoon season
hydrologic cycle
productivity
rainfall
spring barley
eddy covariance
transplantation
carbon balance

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Earth-Surface Processes

Cite this

@article{938589186e484a97b2246433d5c78fff,
title = "Influence of the Asian monsoon on net ecosystem carbon exchange in two major ecosystems in Korea",
abstract = "Considering the feedback in radiation, temperature, and soil moisture with alterations in rainfall patterns, the influence of the changing monsoon on Net Ecosystem CO2 Exchange (NEE) can be critical to the estimation of carbon balance in Asia. In this paper, we examined CO2 fluxes measured by the eddy covariance method from 2004 to 2008 in two major ecosystems in the KoFlux sites in Korea, i.e., the Gwangneung Deciduous forest (GDK) and the Haenam Farmland (HFK). Our objectives were to identify the repeatability of the mid-season depression of NEE encountered at the two sites based on the single-year observation, and to further scrutinize its cause, effect, and interannual variability by using multi-year observations. In both GDK and HFK sites, the mid-season depression of NEE was reproduced each year but with different timing, magnitude, and mechanism. At the GDK site, a predominant factor causing the mid-season depression was a decreased solar radiation and the consequent reduction in Gross Primary Productivity (GPP) during the summer monsoon period. At the HFK site, however, the monsoonal effect was less pronounced and the apparent mid-season depression was mainly a result of the management practices such as cultivation of spring barley and rice transplantation. Other flux observation sites in East Asia also showed a decline in radiation but with a lesser degree during the monsoon season, resulting in less pronounced depression in NEE. In our study, the observed depressions in NEE caused both GDK and HFK sites to become a weaker carbon sink or even a source in the middle of the growing season. On average, the GDK site (with maximum leaf area index of ∼5) was a weak carbon sink with NEE of-84 gC m-2 y-1. Despite about 20{\%} larger GPP (of 1321 gC m-2y -1) in comparison with the GDK site, the HFK site (with maximum leaf area index of 3-4) was a weaker carbon sink with NEE of-58 gC m-2 y-1 because of greater ecosystem respiration (of 1263 gC m -2 y-1). These NEE values were near the low end of the ranges reported in the literature for similar ecosystems in mid-latitudes. With the projected trends of the extended length of monsoon with more intensive rainfalls in East Asia, the observed delicate coupling between carbon and hydrological cycles may turn these key ecosystems into carbon neutral.",
author = "H. Kwon and J. Kim and J. Hong and Lim, {J. H.}",
year = "2010",
month = "12",
day = "1",
doi = "10.5194/bg-7-1493-2010",
language = "English",
volume = "7",
pages = "1493--1504",
journal = "Biogeosciences",
issn = "1726-4170",
publisher = "European Geosciences Union",
number = "5",

}

Influence of the Asian monsoon on net ecosystem carbon exchange in two major ecosystems in Korea. / Kwon, H.; Kim, J.; Hong, J.; Lim, J. H.

In: Biogeosciences, Vol. 7, No. 5, 01.12.2010, p. 1493-1504.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Influence of the Asian monsoon on net ecosystem carbon exchange in two major ecosystems in Korea

AU - Kwon, H.

AU - Kim, J.

AU - Hong, J.

AU - Lim, J. H.

PY - 2010/12/1

Y1 - 2010/12/1

N2 - Considering the feedback in radiation, temperature, and soil moisture with alterations in rainfall patterns, the influence of the changing monsoon on Net Ecosystem CO2 Exchange (NEE) can be critical to the estimation of carbon balance in Asia. In this paper, we examined CO2 fluxes measured by the eddy covariance method from 2004 to 2008 in two major ecosystems in the KoFlux sites in Korea, i.e., the Gwangneung Deciduous forest (GDK) and the Haenam Farmland (HFK). Our objectives were to identify the repeatability of the mid-season depression of NEE encountered at the two sites based on the single-year observation, and to further scrutinize its cause, effect, and interannual variability by using multi-year observations. In both GDK and HFK sites, the mid-season depression of NEE was reproduced each year but with different timing, magnitude, and mechanism. At the GDK site, a predominant factor causing the mid-season depression was a decreased solar radiation and the consequent reduction in Gross Primary Productivity (GPP) during the summer monsoon period. At the HFK site, however, the monsoonal effect was less pronounced and the apparent mid-season depression was mainly a result of the management practices such as cultivation of spring barley and rice transplantation. Other flux observation sites in East Asia also showed a decline in radiation but with a lesser degree during the monsoon season, resulting in less pronounced depression in NEE. In our study, the observed depressions in NEE caused both GDK and HFK sites to become a weaker carbon sink or even a source in the middle of the growing season. On average, the GDK site (with maximum leaf area index of ∼5) was a weak carbon sink with NEE of-84 gC m-2 y-1. Despite about 20% larger GPP (of 1321 gC m-2y -1) in comparison with the GDK site, the HFK site (with maximum leaf area index of 3-4) was a weaker carbon sink with NEE of-58 gC m-2 y-1 because of greater ecosystem respiration (of 1263 gC m -2 y-1). These NEE values were near the low end of the ranges reported in the literature for similar ecosystems in mid-latitudes. With the projected trends of the extended length of monsoon with more intensive rainfalls in East Asia, the observed delicate coupling between carbon and hydrological cycles may turn these key ecosystems into carbon neutral.

AB - Considering the feedback in radiation, temperature, and soil moisture with alterations in rainfall patterns, the influence of the changing monsoon on Net Ecosystem CO2 Exchange (NEE) can be critical to the estimation of carbon balance in Asia. In this paper, we examined CO2 fluxes measured by the eddy covariance method from 2004 to 2008 in two major ecosystems in the KoFlux sites in Korea, i.e., the Gwangneung Deciduous forest (GDK) and the Haenam Farmland (HFK). Our objectives were to identify the repeatability of the mid-season depression of NEE encountered at the two sites based on the single-year observation, and to further scrutinize its cause, effect, and interannual variability by using multi-year observations. In both GDK and HFK sites, the mid-season depression of NEE was reproduced each year but with different timing, magnitude, and mechanism. At the GDK site, a predominant factor causing the mid-season depression was a decreased solar radiation and the consequent reduction in Gross Primary Productivity (GPP) during the summer monsoon period. At the HFK site, however, the monsoonal effect was less pronounced and the apparent mid-season depression was mainly a result of the management practices such as cultivation of spring barley and rice transplantation. Other flux observation sites in East Asia also showed a decline in radiation but with a lesser degree during the monsoon season, resulting in less pronounced depression in NEE. In our study, the observed depressions in NEE caused both GDK and HFK sites to become a weaker carbon sink or even a source in the middle of the growing season. On average, the GDK site (with maximum leaf area index of ∼5) was a weak carbon sink with NEE of-84 gC m-2 y-1. Despite about 20% larger GPP (of 1321 gC m-2y -1) in comparison with the GDK site, the HFK site (with maximum leaf area index of 3-4) was a weaker carbon sink with NEE of-58 gC m-2 y-1 because of greater ecosystem respiration (of 1263 gC m -2 y-1). These NEE values were near the low end of the ranges reported in the literature for similar ecosystems in mid-latitudes. With the projected trends of the extended length of monsoon with more intensive rainfalls in East Asia, the observed delicate coupling between carbon and hydrological cycles may turn these key ecosystems into carbon neutral.

UR - http://www.scopus.com/inward/record.url?scp=77951825781&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77951825781&partnerID=8YFLogxK

U2 - 10.5194/bg-7-1493-2010

DO - 10.5194/bg-7-1493-2010

M3 - Article

AN - SCOPUS:77951825781

VL - 7

SP - 1493

EP - 1504

JO - Biogeosciences

JF - Biogeosciences

SN - 1726-4170

IS - 5

ER -