Abstract
Using non-equilibrium molecular dynamics, argon nanojet injection was simulated under vacuum conditions. A series of simulations with different shapes of solid platinum injectors was conducted. Observed droplet sizes and jet break-up characteristics resemble the Rayleigh break-up theory. However, the different injector shapes did not cause a significant change in the nanojet break-up behaviour. The liquid temperature inside the injector was found to be a controlling factor in determining the subsequent break-up characteristics. A higher liquid temperature is preferred for the faster nanojet break-up with the shorter break-up length.
Original language | English |
---|---|
Pages (from-to) | 2838-2845 |
Number of pages | 8 |
Journal | Nanotechnology |
Volume | 16 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2005 Dec 1 |
All Science Journal Classification (ASJC) codes
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering