Insulin-like growth factor-II regulates the 12-lipoxygenase gene expression and promotes cell proliferation in human keratinocytes via the extracellular regulatory kinase and phosphatidylinositol 3-kinase pathways

Hyun Yoo, Su Jin Kim, Younghwa Kim, Hyangkyu Lee, Tae Yoon Kim

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

To study the relationship between insulin-like growth factor-II (IGF-II) and 12-lipoxygenase (12-LOX) that are upregulated in psoriasis, we monitored 12-lipoxygenase expression in the insulin-like growth factor-II treated human keratinocytes and explored the signaling pathways of 12-lipoxygenase expression. Insulin-like growth factor-II induced 12-lipoxygenase mRNA and protein levels in human keratinocytes through two major signal transduction pathways, namely, the extracellular signaling-regulated kinase (ERK)-mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways. The IGF-II-induced upregulation of 12-lipoxygenase was attenuated by pretreating the cells with selective inhibitors or by overexpressing dominant-negative MEK. In addition, treatment of HaCaT cells with the 12-lipoxygenase metabolite 12 (S)-hydroxyeicosatetraenoic acid (12(S)-HETE) directly stimulated DNA synthesis and mitogenesis, and injection of insulin-like growth factor-II into the skin of hairless mice induced epidermal hyperplasia. These results suggest that insulin-like growth factor-II is involved in the pathogenesis of psoriasis as a paracrine inducer of 12-lipoxygenase.

Original languageEnglish
Pages (from-to)1248-1259
Number of pages12
JournalInternational Journal of Biochemistry and Cell Biology
Volume39
Issue number6
DOIs
Publication statusPublished - 2007 May 31

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Cell Biology

Fingerprint Dive into the research topics of 'Insulin-like growth factor-II regulates the 12-lipoxygenase gene expression and promotes cell proliferation in human keratinocytes via the extracellular regulatory kinase and phosphatidylinositol 3-kinase pathways'. Together they form a unique fingerprint.

  • Cite this