Integrated model of economic generation system expansion plan for the stable operation of a power plant and the response of future electricity power demand

Jang Yeop Kim, Kyung Sup Kim

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)


The current study aims to establish an optimal Generation System Expansion Plan that can satisfy the increasing electricity demand while maintaining operational elements and the stability of the energy supply. The architecture is composed of plan-level and operation-level models, which are basically based on optimization. In the first step, we estimated future power demand data through time series analysis. In addition, power plant data were defined and verified data were collected. In the next step, the previous Generation System Expansion Plan methodology was used to deduce a feasible solution and construction costs that satisfy the reserve rate. In the third step, mixed integer programming (MIP)-based power generation system operation plan methodology was used to deduce numbers on the operation of power generation system. In addition, power plants with similar characteristics were grouped to reduce the calculation complexity of unit commitment. In the last step, a feasible solution for the duration of the plan (deduced in Stage II) and operations and maintenance cost information were combined to produce the optimal solution that minimizes the total cost. Experiments were conducted to demonstrate the proposed integrated generation system expansion planning architecture for establishing the optimal generation system expansion planning. This study has academic implications for the establishment of optimal power plant expansion plans to meet future increasing power demand while maintaining operational considerations and supply stability. The effectiveness of the proposed methodology is also illustrated through comparison and verification with the National Plan for Electricity Supply and Demand.

Original languageEnglish
Article number2417
JournalSustainability (Switzerland)
Issue number7
Publication statusPublished - 2018 Jul 11

Bibliographical note

Funding Information:
Acknowledgments: This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2017S1A5B8060156). And this work was supported (in part) by the Yonsei University Research Fund (Post Doc. Researcher Supporting Program) of 2017 (project No.: 2017-12-0034).

Publisher Copyright:
© 2018 by the authors.

All Science Journal Classification (ASJC) codes

  • Geography, Planning and Development
  • Renewable Energy, Sustainability and the Environment
  • Environmental Science (miscellaneous)
  • Energy Engineering and Power Technology
  • Management, Monitoring, Policy and Law


Dive into the research topics of 'Integrated model of economic generation system expansion plan for the stable operation of a power plant and the response of future electricity power demand'. Together they form a unique fingerprint.

Cite this