Integrated surface emitting laser arrays with flat-tip microprobes for the near-field optical data storage

Young Joo Kim, Shu Ying Ye, Kazuhiro Suzuki, Kenya Goto

Research output: Contribution to journalConference article

Abstract

Current optical data storage is challenging to increase its memory capacity and data transfer rate for realizing high-quality image and rapid service in the coming digital, multimedia and network era. To actualize more effective and simple data storage, a novel parallel near-field optical system has been proposed using vertical cavity surface emitting laser (VCSEL) microprobe arrays. The new parallel optical system is based a multibeam recording head consisting of a VCSEL array with apertures of nanometer size as a near-field wave exit. We have developed some candidates for the parallel recording head, including the direct aperture formation on the VCSEL emitting surface and the preparation of microprobe arrays with flat-tip structure. The new flat-tip microprobe array has advantages for improving the optical efficiency and stabilizing the contact head system with optical media since it is prepared from semiconductor materials of high refractive index. Silicon nano-aperture probe array has been prepared successfully with the aperture size of 150 to 500nm using micro-fabrication techniques. We have also investigated the integrated microprobe array by the direct fabrication of flat-tip probes on the substrate of bottom emitting VCSEL arrays. Finally the reading mechanism has been studied theoretically using a finite difference time domain (FDTD) simulation and an optical feedback effect of semiconductor lasers for the integrated microprobe VCSEL array. We believe this nano-aperture VCSEL probe array is sufficiently effective to be applied to the parallel recording head for the near-field optical data storage of a high data capacity and fast transfer rate.

Original languageEnglish
Pages (from-to)V2.4.1-V2.4.10
JournalMaterials Research Society Symposium - Proceedings
Volume674
Publication statusPublished - 2001 Dec 1
EventApplications of Ferromagnetic and Optical Materials, Storage and Magnotoelectronics - San Francisco, CA, United States
Duration: 2001 Apr 162001 Apr 20

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Integrated surface emitting laser arrays with flat-tip microprobes for the near-field optical data storage'. Together they form a unique fingerprint.

  • Cite this