Abstract
Non-small-cell lung cancer (NSCLC) constitutes approximately 80% of all diagnosed lung cancers, and diagnostic markers detectable in the plasma/serum of NSCLC patients are greatly needed. In this study, we established a pipeline for the discovery of markers using 9 transcriptome datasets from publicly available databases and profiling of six lung cancer cell secretomes. Thirty-one out of 312 proteins that overlapped between two-fold differentially expressed genes and identified cell secretome proteins were detected in the pooled plasma of lung cancer patients. To quantify the candidates in the serum of NSCLC patients, multiple-reaction-monitoring mass spectrometry (MRM-MS) was performed for five candidate biomarkers. Finally, two potential biomarkers (BCHE and GPx3; AUC = 0.713 and 0.673, respectively) and one two-marker panel generated by logistic regression (BCHE/GPx3; AUC = 0.773) were identified. A validation test was performed by ELISA to evaluate the reproducibility of GPx3 and BCHE expression in an independent set of samples (BCHE and GPx3; AUC = 0.630 and 0.759, respectively, BCHE/GPx3 panel; AUC = 0.788). Collectively, these results demonstrate the feasibility of using our pipeline for marker discovery and our MRM-MS platform for verifying potential biomarkers of human diseases.
Original language | English |
---|---|
Article number | e0183896 |
Journal | PloS one |
Volume | 12 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2017 Aug |
Bibliographical note
Funding Information:The study was supported by grants from the National Research Foundation of Korea (NRF-2017M3A9F9030559, NRF-2017M3A9F9030565) and Korea Health Industry Development Institute (HI14C3484) to CL. This study was also supported by a grant (CRI 15023-21) from the Chonnam National University Hospital Biomedical Research Institute to SWL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© 2017 Shin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
All Science Journal Classification (ASJC) codes
- General