Inverse chromatic number problems in interval and permutation graphs

Yerim Chung, Jean François Culus, Marc Demange

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


Given a graph G and a positive integer K, the inverse chromatic number problem consists in modifying the graph as little as possible so that it admits a chromatic number not greater than K. In this paper, we focus on the inverse chromatic number problem for certain classes of graphs. First, we discuss diverse possible versions and then focus on two application frameworks which motivate this problem in interval and permutation graphs: the inverse booking problem and the inverse track assignment problem. The inverse booking problem is closely related to some previously known scheduling problems; we propose new hardness results and polynomial cases. The inverse track assignment problem motivates our study of the inverse chromatic number problem in permutation graphs; we show how to solve in polynomial time a generalization of the problem with a bounded number of colors.

Original languageEnglish
Pages (from-to)763-773
Number of pages11
JournalEuropean Journal of Operational Research
Issue number3
Publication statusPublished - 2015 Jun 16

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2014S1A3A2044046). M. Demange also acknowledges support by the French Agency for Research under the DEFI program TODO, ANR-09-EMER-010.

Publisher Copyright:
© 2014 Elsevier B.V. All rights reserved.

All Science Journal Classification (ASJC) codes

  • Computer Science(all)
  • Modelling and Simulation
  • Management Science and Operations Research
  • Information Systems and Management


Dive into the research topics of 'Inverse chromatic number problems in interval and permutation graphs'. Together they form a unique fingerprint.

Cite this