Inverse seesaw in supersymmetry

Seong Chan Park, Kai Wang

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

We study a mechanism where tiny neutrino masses arise only from radiative contribution in a supersymmetric model. Without tuning the Higgs vev or Yukawa coupling, the tree-level light neutrino mass is rotated away by introducing a new singlet neutrino sL that forms a Dirac mass term with the right-handed neutrino nR in each generation. Even with the U(1)Lep lepton number violation term as non-zero right-handed Majorana neutrino mass MRnRc-nR, the lightest neutrino remains massless at tree level due to an approximate symmetry. Consequently, tiny neutrino masses then only arise from radiative contributions and the right-handed neutrino Majorana mass MR can be at O(keV) to give rise to the correct light neutrino mass at O(eV). Supersymmetry ensures that the Majorana neutrino masses MRnRc-nR and MR-sLc-sL are not generated simultaneously.

Original languageEnglish
Pages (from-to)107-110
Number of pages4
JournalPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
Volume701
Issue number1
DOIs
Publication statusPublished - 2011 Jun 27

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Fingerprint Dive into the research topics of 'Inverse seesaw in supersymmetry'. Together they form a unique fingerprint.

  • Cite this