Investigation of aerosol peak height effect on PBL and volcanic air mass factors for SO2 column retrieval from space-borne hyperspectral UV sensors

Wonei Choi, Jiwon Yang, Hanlim Lee, Michel Van Roozendael, Ja Ho Koo, Junsung Park, Daewon Kim

Research output: Contribution to journalArticle

Abstract

We investigate the effects of aerosol peak height (APH) and various parameters on the air mass factor (AMF) for SO2 retrieval. Increasing aerosol optical depth (AOD) leads to multiple scattering within the planetary boundary layer (PBL) and an increase in PBL SO2 AMF. However, under high AOD conditions, aerosol shielding effects dominate, which causes the PBL SO2 AMF to decrease with increasing AOD. The height of the SO2 layer and the APH are found to significantly influence the PBL SO2 AMF under high AOD conditions. When the SO2 and aerosol layers are of the same height, aerosol multiple scattering occurs dominantly within the PBL, which leads to an increase in the PBL SO2 AMF. When the APH is greater than the SO2 layer height, aerosol shielding effects dominate, which decreases the PBL SO2 AMF. When the SO2 and aerosol layers are of the same height under low AOD and solar zenith angle (SZA) conditions, increased surface reflectance is found to significantly increase the PBL SO2 AMF. However, high AOD dominates the surface reflectance contribution to PBL SO2 AMF. Under high SZA conditions, Rayleigh scattering contributes to a reduction in the light path length and PBL SO2 AMF. For volcanic SO2 AMF, high SZA enhances the light path length within the volcanic SO2 layer, as well as the volcanic SO2 AMF, because of the negligible photon loss by Rayleigh scattering at high altitudes. High aerosol loading and an APH that is greater than the SO2 peak height lead to aerosol shielding effects, which reduce the volcanic SO2 AMF. The SO2 AMF errors are also quantified as a function of uncertainty in the input data of AOD, APH, and surface reflectance. The SO2 AMF sensitivities and error analysis provided here can be used to develop effective error reduction strategies for satellite-based SO2 retrievals.

Original languageEnglish
Article number1459
JournalRemote Sensing
Volume12
Issue number9
DOIs
Publication statusPublished - 2020 May 1

All Science Journal Classification (ASJC) codes

  • Earth and Planetary Sciences(all)

Fingerprint Dive into the research topics of 'Investigation of aerosol peak height effect on PBL and volcanic air mass factors for SO<sub>2</sub> column retrieval from space-borne hyperspectral UV sensors'. Together they form a unique fingerprint.

  • Cite this