Investigation of interfacial adhesion between the top ends of carbon nanotubes

Jungwook Choi, Youngkee Eun, Jongbaeg Kim

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Understanding the interfacial forces of carbon nanotubes (CNTs) is fundamental to the development of electromechanical systems based on the contact of CNTs. However, experimental studies on the adhesion properties between CNTs are scarce despite the remarkable contact quality of CNTs. Here, we present an experimental investigation of the adhesion between the top ends of aligned, self-Adjusted CNTs using a CNT-integrated microelectromechanical actuator. The pull-out and pull-in behaviors of the contact as a function of the applied force by the actuator are precisely identified by measuring the contact resistance between the CNTs. The adhesion between the top ends of individual CNTs is extracted from the measured adhesive strength between the CNT arrays, and it agrees with the theoretical values of the van der Waals interactions. By exploiting the adhesion of the CNT-to-CNT contact, a programmable and reliable microelectromechanical switching device is demonstrated. Our results offer design strategies for diverse CNT-based nano- and microelectromechanical devices that need repeatable contacting interfaces.

Original languageEnglish
Pages (from-to)6598-6605
Number of pages8
JournalACS Applied Materials and Interfaces
Volume6
Issue number9
DOIs
Publication statusPublished - 2014 May 14

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Materials Science(all)

Cite this