TY - GEN
T1 - Investigation of silicon-germanium nanowires THz emission
AU - Balci, Soner
AU - Lee, Woo Jung
AU - Wilbert, David S.
AU - Kung, Patrick
AU - Kang, Chul
AU - Cho, Mann Ho
AU - Kim, Seongsin M.
N1 - Publisher Copyright:
© 2014 IEEE.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2014/11/13
Y1 - 2014/11/13
N2 - Semiconductor nanowires and nanostructures have a great potential for Terahertz generation and detection, especially because certain materials properties such as optical absorption, high electron and hole mobility, and short carrier lifetime can be engineered through structural changes and material compositions. In such structures, the variation in geometry and surface charge characteristics can greatly influence the dynamics of photoexcited carrier recombination, which is directly related to strength of the Terahertz emission. Compared to thin films, nanowires dramatically increase the effective surface area which would have an important role in the absorption. In this work, we studied theoretical and experimental investigation of carrier lifetime reduction and the properties of THz generation in SiGe nanowires. Terahertz emission spectroscopy was used to generate THz pulses from the nanowire samples. Then standard Terahertz time-domain spectroscopy measurements were carried to investigate the material properties and high frequency carrier dynamics of Si1-xGex nanowires. A mobility of 1615 cm2/Vs and a carrier lifetime of ∼0.24 ps were measured. The influence of carrier dynamics properties on the THz generation from SiGe nanowires was investigated in details.
AB - Semiconductor nanowires and nanostructures have a great potential for Terahertz generation and detection, especially because certain materials properties such as optical absorption, high electron and hole mobility, and short carrier lifetime can be engineered through structural changes and material compositions. In such structures, the variation in geometry and surface charge characteristics can greatly influence the dynamics of photoexcited carrier recombination, which is directly related to strength of the Terahertz emission. Compared to thin films, nanowires dramatically increase the effective surface area which would have an important role in the absorption. In this work, we studied theoretical and experimental investigation of carrier lifetime reduction and the properties of THz generation in SiGe nanowires. Terahertz emission spectroscopy was used to generate THz pulses from the nanowire samples. Then standard Terahertz time-domain spectroscopy measurements were carried to investigate the material properties and high frequency carrier dynamics of Si1-xGex nanowires. A mobility of 1615 cm2/Vs and a carrier lifetime of ∼0.24 ps were measured. The influence of carrier dynamics properties on the THz generation from SiGe nanowires was investigated in details.
UR - http://www.scopus.com/inward/record.url?scp=84911979588&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84911979588&partnerID=8YFLogxK
U2 - 10.1109/IRMMW-THz.2014.6956086
DO - 10.1109/IRMMW-THz.2014.6956086
M3 - Conference contribution
AN - SCOPUS:84911979588
T3 - International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz
BT - 2014 39th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2014
PB - IEEE Computer Society
T2 - 39th International Conference on Infrared, Millimeter and Terahertz Waves, IRMMW-THz 2014
Y2 - 14 September 2014 through 19 September 2014
ER -