Investigation of the bonding states of the SiO2 aerogel film/metal interface

Sang Bae Jung, Hyung Ho Park, Haecheon Kim

Research output: Contribution to journalConference article

22 Citations (Scopus)

Abstract

Due to a rapid decrease in the physical dimensions of today's microelectronic devices, the RC-time-delay of the interconnection is now a serious problem. As a possible plan, lower resistive metal or lower dielectric constant material has to be introduced. For a low dielectric constant material, SiO2 aerogel may be a promising candidate for an interlayer dielectric (ILD) due to its relatively small dielectric constant. However, the formation of a SiO2 aerogel film on metal substrate may induce a modification of the metal surface because the aerogel film is made by the sol-gel process. Thus, this investigation focused on the interface formation of SiO2 aerogel film and substrate metal is important for the application of low-k material. It was revealed that aluminum silicate bond during aging of spun-on film was induced at the interface with Al and oxidized Al bond was increased after supercritical drying. Copper silicate bond was formed at the interface of the aged film and maintained after fabrication of SiO2 aerogel film. Cu(OH)2 bond, which did not exist at the Cu surface, was generated during film fabrication process. Measurement of leakage current of SiO2 aerogel film deposited on various substrates indicated the degradation of material property in Al/SiO2 aerogel/Cu structure.

Original languageEnglish
Pages (from-to)575-579
Number of pages5
JournalThin Solid Films
Volume447-448
DOIs
Publication statusPublished - 2004 Jan 30
EventProceedings of the 30th International Conference on Metallurgie - San Diego, CA, United States
Duration: 2002 Apr 282002 May 2

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Investigation of the bonding states of the SiO<sub>2</sub> aerogel film/metal interface'. Together they form a unique fingerprint.

  • Cite this