Abstract
Organic resistive memory devices are one of the promising next-generation data storage technologies which can potentially enable low-cost printable and flexible memory devices. Despite a substantial development of the field, the mechanism of the resistive switching phenomenon in organic resistive memory devices has not been clearly understood. Here, the time–dependent current behavior of unipolar organic resistive memory devices under a constant voltage stress to investigate the turn-on process is studied. The turn-on process is discovered to occur probabilistically through a series of abrupt increases in the current, each of which can be associated with new conducting paths formation. The measured turn-on time values can be collectively described with the Weibull distribution which reveals the properties of the percolated conducting paths. Both the shape of the network and the current path formation rate are significantly affected by the stress voltage. A general probabilistic nature of the percolated conducting path formation during the turn-on process is demonstrated among unipolar memory devices made of various materials. The results of this study are also highly relevant for practical operations of the resistive memory devices since the guidelines for time-widths and magnitudes of voltage pulses required for writing and reading operation can be potentially set.
Original language | English |
---|---|
Article number | 1801162 |
Journal | Advanced Functional Materials |
Volume | 28 |
Issue number | 35 |
DOIs | |
Publication status | Published - 2018 Aug 29 |
Bibliographical note
Funding Information:The authors appreciate the financial support of the National Creative Research Laboratory program (Grant No. 2012026372) through the National Research Foundation of Korea (NRF) funded by the Korean Ministry of Science and ICT.
Publisher Copyright:
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics