Isolation and expression of a cDNA clone encoding HLA-Cw6: unique characteristics of HLA-C encoded gene products

Shinichi Mizuno, Soo Hyoung Kang, Han Woong Lee, Joseph A. Trapani, Bo Dupont, Soo Young Yang

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

The HLA-C encoded gene products display several characteristics which distinguish them from HLA-A and -B. The HLA-C antigens are poorly expressed on the cell surface, they display multiple proteins with different isoelectric points, and alloimmunization to HLA-C antigens is less common. To investigate whether the multiple products result from differential splicing of HLA-C gene transcripts, we have isolated a full-length cDNA clone encoding the Cw6 antigen. Class I antigens produced by the cDNA clone in transfected cells were of the same relative mass as those observed in the parental cells when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Isoelectric focusing (IEF) gel analysis of the cDNA translated products in transfectants revealed multiple IEF bands. All IEF bands detected in the transfectants were also found in the parental cells, indicating that the multiplicity of the C-locus products was not due to differential splicing of HLA-C gene transcripts, but was probably due to post-translational modification. Comparison of the sequences of C-locus alleles with those of A and B alleles did not show any apparent sequences which would generate multiple IEF bands. Comparison of the coding regions for seven HLA-C alleles and one HLA-C-related class I gene with available data for 15 HLA-A and 20 HLA-B alleles demonstrated several unique features for the HLA-C locus. Six sites in the extra cellular domains, three in al and three in a3, were unique. While the cytoplasmic (CP) domain of HLA-A and -B are almost identical, the CP of HLA-C alleles is unique. Similar unique features of HLA-C are also observed in the transmembrane domain, resulting in locus-specific residues between positions 295 and 300. The present study has ruled out differential mRNA splicing as a mechanism for the multiplicity of Cw6 antigens and demonstrated unique HLA-C locus sequences.

Original languageEnglish
Pages (from-to)323-330
Number of pages8
JournalImmunogenetics
Volume29
Issue number5
DOIs
Publication statusPublished - 1989 May 1

Fingerprint

HLA-C Antigens
Complementary DNA
Clone Cells
Genes
Isoelectric Focusing
Alleles
HLA-A Antigens
HLA-B Antigens
HLA-C*06 antigen
MHC Class I Genes
Antigens
Histocompatibility Antigens Class I
Isoelectric Point
Post Translational Protein Processing
Sodium Dodecyl Sulfate
Polyacrylamide Gel Electrophoresis

All Science Journal Classification (ASJC) codes

  • Immunology
  • Genetics

Cite this

Mizuno, Shinichi ; Kang, Soo Hyoung ; Lee, Han Woong ; Trapani, Joseph A. ; Dupont, Bo ; Yang, Soo Young. / Isolation and expression of a cDNA clone encoding HLA-Cw6 : unique characteristics of HLA-C encoded gene products. In: Immunogenetics. 1989 ; Vol. 29, No. 5. pp. 323-330.
@article{50ca8864314e4c2facbb13ab1f005cef,
title = "Isolation and expression of a cDNA clone encoding HLA-Cw6: unique characteristics of HLA-C encoded gene products",
abstract = "The HLA-C encoded gene products display several characteristics which distinguish them from HLA-A and -B. The HLA-C antigens are poorly expressed on the cell surface, they display multiple proteins with different isoelectric points, and alloimmunization to HLA-C antigens is less common. To investigate whether the multiple products result from differential splicing of HLA-C gene transcripts, we have isolated a full-length cDNA clone encoding the Cw6 antigen. Class I antigens produced by the cDNA clone in transfected cells were of the same relative mass as those observed in the parental cells when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Isoelectric focusing (IEF) gel analysis of the cDNA translated products in transfectants revealed multiple IEF bands. All IEF bands detected in the transfectants were also found in the parental cells, indicating that the multiplicity of the C-locus products was not due to differential splicing of HLA-C gene transcripts, but was probably due to post-translational modification. Comparison of the sequences of C-locus alleles with those of A and B alleles did not show any apparent sequences which would generate multiple IEF bands. Comparison of the coding regions for seven HLA-C alleles and one HLA-C-related class I gene with available data for 15 HLA-A and 20 HLA-B alleles demonstrated several unique features for the HLA-C locus. Six sites in the extra cellular domains, three in al and three in a3, were unique. While the cytoplasmic (CP) domain of HLA-A and -B are almost identical, the CP of HLA-C alleles is unique. Similar unique features of HLA-C are also observed in the transmembrane domain, resulting in locus-specific residues between positions 295 and 300. The present study has ruled out differential mRNA splicing as a mechanism for the multiplicity of Cw6 antigens and demonstrated unique HLA-C locus sequences.",
author = "Shinichi Mizuno and Kang, {Soo Hyoung} and Lee, {Han Woong} and Trapani, {Joseph A.} and Bo Dupont and Yang, {Soo Young}",
year = "1989",
month = "5",
day = "1",
doi = "10.1007/BF00352842",
language = "English",
volume = "29",
pages = "323--330",
journal = "Immunogenetics",
issn = "0093-7711",
publisher = "Springer Verlag",
number = "5",

}

Isolation and expression of a cDNA clone encoding HLA-Cw6 : unique characteristics of HLA-C encoded gene products. / Mizuno, Shinichi; Kang, Soo Hyoung; Lee, Han Woong; Trapani, Joseph A.; Dupont, Bo; Yang, Soo Young.

In: Immunogenetics, Vol. 29, No. 5, 01.05.1989, p. 323-330.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Isolation and expression of a cDNA clone encoding HLA-Cw6

T2 - unique characteristics of HLA-C encoded gene products

AU - Mizuno, Shinichi

AU - Kang, Soo Hyoung

AU - Lee, Han Woong

AU - Trapani, Joseph A.

AU - Dupont, Bo

AU - Yang, Soo Young

PY - 1989/5/1

Y1 - 1989/5/1

N2 - The HLA-C encoded gene products display several characteristics which distinguish them from HLA-A and -B. The HLA-C antigens are poorly expressed on the cell surface, they display multiple proteins with different isoelectric points, and alloimmunization to HLA-C antigens is less common. To investigate whether the multiple products result from differential splicing of HLA-C gene transcripts, we have isolated a full-length cDNA clone encoding the Cw6 antigen. Class I antigens produced by the cDNA clone in transfected cells were of the same relative mass as those observed in the parental cells when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Isoelectric focusing (IEF) gel analysis of the cDNA translated products in transfectants revealed multiple IEF bands. All IEF bands detected in the transfectants were also found in the parental cells, indicating that the multiplicity of the C-locus products was not due to differential splicing of HLA-C gene transcripts, but was probably due to post-translational modification. Comparison of the sequences of C-locus alleles with those of A and B alleles did not show any apparent sequences which would generate multiple IEF bands. Comparison of the coding regions for seven HLA-C alleles and one HLA-C-related class I gene with available data for 15 HLA-A and 20 HLA-B alleles demonstrated several unique features for the HLA-C locus. Six sites in the extra cellular domains, three in al and three in a3, were unique. While the cytoplasmic (CP) domain of HLA-A and -B are almost identical, the CP of HLA-C alleles is unique. Similar unique features of HLA-C are also observed in the transmembrane domain, resulting in locus-specific residues between positions 295 and 300. The present study has ruled out differential mRNA splicing as a mechanism for the multiplicity of Cw6 antigens and demonstrated unique HLA-C locus sequences.

AB - The HLA-C encoded gene products display several characteristics which distinguish them from HLA-A and -B. The HLA-C antigens are poorly expressed on the cell surface, they display multiple proteins with different isoelectric points, and alloimmunization to HLA-C antigens is less common. To investigate whether the multiple products result from differential splicing of HLA-C gene transcripts, we have isolated a full-length cDNA clone encoding the Cw6 antigen. Class I antigens produced by the cDNA clone in transfected cells were of the same relative mass as those observed in the parental cells when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Isoelectric focusing (IEF) gel analysis of the cDNA translated products in transfectants revealed multiple IEF bands. All IEF bands detected in the transfectants were also found in the parental cells, indicating that the multiplicity of the C-locus products was not due to differential splicing of HLA-C gene transcripts, but was probably due to post-translational modification. Comparison of the sequences of C-locus alleles with those of A and B alleles did not show any apparent sequences which would generate multiple IEF bands. Comparison of the coding regions for seven HLA-C alleles and one HLA-C-related class I gene with available data for 15 HLA-A and 20 HLA-B alleles demonstrated several unique features for the HLA-C locus. Six sites in the extra cellular domains, three in al and three in a3, were unique. While the cytoplasmic (CP) domain of HLA-A and -B are almost identical, the CP of HLA-C alleles is unique. Similar unique features of HLA-C are also observed in the transmembrane domain, resulting in locus-specific residues between positions 295 and 300. The present study has ruled out differential mRNA splicing as a mechanism for the multiplicity of Cw6 antigens and demonstrated unique HLA-C locus sequences.

UR - http://www.scopus.com/inward/record.url?scp=0024566362&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024566362&partnerID=8YFLogxK

U2 - 10.1007/BF00352842

DO - 10.1007/BF00352842

M3 - Article

C2 - 2714853

AN - SCOPUS:0024566362

VL - 29

SP - 323

EP - 330

JO - Immunogenetics

JF - Immunogenetics

SN - 0093-7711

IS - 5

ER -