Joint Deep Model-based MR Image and Coil Sensitivity Reconstruction Network (Joint-ICNet) for Fast MRI

Yohan Jun, Hyungseob Shin, Taejoon Eo, Dosik Hwang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Citations (Scopus)

Abstract

Magnetic resonance imaging (MRI) can provide diagnostic information with high-resolution and high-contrast images. However, MRI requires a relatively long scan time compared to other medical imaging techniques, where long scan time might occur patient's discomfort and limit the increase in resolution of magnetic resonance (MR) image. In this study, we propose a Joint Deep Model-based MR Image and Coil Sensitivity Reconstruction Network, called Joint-ICNet, which jointly reconstructs an MR image and coil sensitivity maps from undersampled multi-coil k-space data using deep learning networks combined with MR physical models. Joint-ICNet has two main blocks, where one is an MR image reconstruction block that reconstructs an MR image from undersampled multi-coil k-space data and the other is a coil sensitivity maps reconstruction block that estimates coil sensitivity maps from undersampled multi-coil k-space data. The desired MR image and coil sensitivity maps can be obtained by sequentially estimating them with two blocks based on the unrolled network architecture. To demonstrate the performance of Joint-ICNet, we performed experiments with a fastMRI brain dataset for two reduction factors (R = 4 and 8). With qualitative and quantitative results, we demonstrate that our proposed Joint-ICNet outperforms conventional parallel imaging and deep-learning-based methods in reconstructing MR images from undersampled multi-coil k-space data.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PublisherIEEE Computer Society
Pages5266-5275
Number of pages10
ISBN (Electronic)9781665445092
DOIs
Publication statusPublished - 2021
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States
Duration: 2021 Jun 192021 Jun 25

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Country/TerritoryUnited States
CityVirtual, Online
Period21/6/1921/6/25

Bibliographical note

Funding Information:
Acknowledgements. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2019R1A2B5B01070488), Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (NRF-2018M3A9H6081483), Y-BASE R&E Institute a Brain Korea 21, Yonsei University, and partially supported by the Graduate School of YONSEI University Research Scholarship Grants in 2017.

Publisher Copyright:
© 2021 IEEE

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Joint Deep Model-based MR Image and Coil Sensitivity Reconstruction Network (Joint-ICNet) for Fast MRI'. Together they form a unique fingerprint.

Cite this