Large-scale nanoporous metal-coated silica aerogels for high SERS effect improvement

Changwook Kim, Seunghwa Baek, Yunha Ryu, Yeonhong Kim, Dongheok Shin, Chang Won Lee, Wounjhang Park, Augustine M. Urbas, Gumin Kang, Kyoungsik Kim

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

We investigate the optical properties and surface-enhanced Raman scattering (SERS) characteristics of metal-coated silica aerogels. Silica aerogels were fabricated by easily scalable sol-gel and supercritical drying processes. Metallic nanogaps were formed on the top surface of the nanoporous silica network by controlling the thickness of the metal layer. The optimized metallic nanogap structure enabled strong confinement of light inside the gaps, which is a suitable property for SERS effect. We experimentally evaluated the SERS enhancement factor with the use of benzenethiol as a probe molecule. The enhancement factor reached 7.9 × 107 when molecules were adsorbed on the surface of the 30 nm silver-coated aerogel. We also theoretically investigated the electric field distribution dependence on the structural geometry and substrate indices. On the basis of FDTD simulations, we concluded that the electric field was highly amplified in the vicinity of the target analyte owing to a combination of the aerogel’s ultralow refractive index and the high-density metallic nanogaps. The aerogel substrate with metallic nanogaps shows great potential for use as an inexpensive, highly sensitive SERS platform to detect environmental and biological target molecules.

Original languageEnglish
Article number15144
JournalScientific reports
Volume8
Issue number1
DOIs
Publication statusPublished - 2018 Dec 1

Bibliographical note

Funding Information:
This research was supported by the Global Research Lab. (GRL) Program, the Pioneer Research Centre Program of Korea funded by the Ministry of Science, ICT and Future Planning (NRF-2016K1A1A2912758, NRF-2013M3C1A3065045), the Centre for Advanced Meta-Materials (CAMM-2014M3A6B3063712) funded by the Ministry of Science, ICT and Future Planning as Global Frontier Project, and the Asian Office of Aerospace R&D grant, FA2386-15-1-4024 (15IOA024), and the KIST Institutional Program(2E28070).

Publisher Copyright:
© 2018, The Author(s).

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Large-scale nanoporous metal-coated silica aerogels for high SERS effect improvement'. Together they form a unique fingerprint.

Cite this