Large-Scale Self-Limiting Synthesis of Monolayer MoS2 via Proximity Evaporation from Mo Films

Hong Je Choi, Ye Seul Jung, Seung Min Lee, Sojung Kang, Dongjea Seo, Hangyel Kim, Heon Jin Choi, Gwan Hyoung Lee, Yong Soo Cho

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The large-scale synthesis of two-dimensional transition metal dichalcogenides has been actively investigated in recent years. Here, we introduce a nonconventional synthesis process of 2-in.-scale monolayer MoS2 with fairly good uniform coverage, which is based on a unique reaction mechanism due to the self-limiting precursor source in a proximity reaction environment with a distance of only âˆ0.5 mm from the reaction zone. The large-scale MoS2 monolayer film was successfully synthesized using an atmospheric pressure chemical vapor deposition reaction of precursor Mo film in flowing H2S gas through an indirect sulfurization sequence with the oxidized Mo species. The short distance of ~0.5 mm provides a unique advantage of uniformity with the self-limiting reaction due to the limited MoO3-x supply. The chemical states of the precursor and deposited films at reaction temperatures were investigated to determine the reaction mechanism of the synthesis. This processing technique is extendable to other two-dimensional materials demanding large-scale coverage with good uniformity.

Original languageEnglish
Pages (from-to)2698-2705
Number of pages8
JournalCrystal Growth and Design
Volume20
Issue number4
DOIs
Publication statusPublished - 2020 Apr 1

Bibliographical note

Funding Information:
This work was financially supported by grants from the National Research Foundation of Korea (NRF-2016M3A7B4910151), the Industrial Strategic Technology Development Program (#10079981), the Korea Institute of Energy Technology Evaluation and Planning (No. 20173010013340) funded by the Ministry of Trade, Industry, & Energy (MOTIE) of Korea, and the Creative Materials Discovery Program by the Ministry of Science and ICT (2018M3D1A1058536).

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Large-Scale Self-Limiting Synthesis of Monolayer MoS<sub>2</sub> via Proximity Evaporation from Mo Films'. Together they form a unique fingerprint.

Cite this