Large-Scale Synthesis of MOF-Derived Superporous Carbon Aerogels with Extraordinary Adsorption Capacity for Organic Solvents

Chaohai Wang, Jeonghun Kim, Jing Tang, Jongbeom Na, Yong Mook Kang, Minjun Kim, Hyunsoo Lim, Yoshio Bando, Jiansheng Li, Yusuke Yamauchi

Research output: Contribution to journalArticlepeer-review

59 Citations (Scopus)

Abstract

Carbon aerogels (CAs) with 3D interconnected networks hold promise for application in areas such as pollutant treatment, energy storage, and electrocatalysis. In spite of this, it remains challenging to synthesize high-performance CAs on a large scale in a simple and sustainable manner. We report an eco-friendly method for the scalable synthesis of ultralight and superporous CAs by using cheap and widely available agarose (AG) biomass as the carbon precursor. Zeolitic imidazolate framework-8 (ZIF-8) with high porosity is introduced into the AG aerogels to increase the specific surface area and enable heteroatom doping. After pyrolysis under inert atmosphere, the ZIF-8/AG-derived nitrogen-doped CAs show a highly interconnected porous mazelike structure with a low density of 24 mg cm−3, a high specific surface area of 516 m2 g−1, and a large pore volume of 0.58 cm−3 g−1. The resulting CAs exhibit significant potential for application in the adsorption of organic pollutants.

Original languageEnglish
Pages (from-to)2066-2070
Number of pages5
JournalAngewandte Chemie - International Edition
Volume59
Issue number5
DOIs
Publication statusPublished - 2020 Jan 27

Bibliographical note

Funding Information:
The authors thank the National Natural Science Foundation of China (NSFC) (No. 51878352), the PAPD of Jiangsu higher education institutions. C. Wang thanks the support of China Scholarship Council (CSC) and Shanghai Tongji Gao Tingyao Environmental Science and Technology Development Foundation. J. Tang and Y. Yamauchi are the recipients of Discovery Early Career Researcher Award (DE190101410) and Future Fellow (FT150100479), respectively, funded by the Australian Research Council (ARC). This research was also supported by the National Research Foundation (NRF) funded (Grant numbers: 2017M3A7B4041987) by the Ministry of Science, Korea. This work was also performed in part at the Queensland node of the Australian National Fabrication Facility, a company established under the National Collaborative Research Infrastructure Strategy to provide nano and microfabrication facilities for Australia's researchers.

Publisher Copyright:
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)

Fingerprint Dive into the research topics of 'Large-Scale Synthesis of MOF-Derived Superporous Carbon Aerogels with Extraordinary Adsorption Capacity for Organic Solvents'. Together they form a unique fingerprint.

Cite this