Layer-by-layer assembled polymeric thin films as prospective drug delivery carriers: Design and applications

Sohyeon Park, Uiyoung Han, Daheui Choi, Jinkee Hong

Research output: Contribution to journalReview articlepeer-review

20 Citations (Scopus)

Abstract

Background: The main purpose of drug delivery systems is to deliver the drugs at the appropriate concentration to the precise target site. Recently, the application of a thin film in the field of drug delivery has gained increasing interest because of its ability to safely load drugs and to release the drug in a controlled manner, which improves drug efficacy. Drug loading by the thin film can be done in various ways, depending on type of the drug, the area of exposure, and the purpose of drug delivery. Main text: This review summarizes the various methods used for preparing thin films with drugs via Layer-by-layer (LbL) assembly. Furthermore, additional functionalities of thin films using surface modification in drug delivery are briefly discussed. There are three types of methods for preparing a drug-carrying multilayered film using LbL assembly. First methods include approaches for direct loading of the drug into the pre-fabricated multilayer film. Second methods are preparing thin films using drugs as building blocks. Thirdly, the drugs are incorporated in the cargo so that the cargo itself can be used as the materials of the film. Conclusion: The appropriate designs of the drug-loaded film were produced in consideration of the release amounts and site of the desired drug. Furthermore, additional surface modification using the LbL technique enabled the preparation of effective drug delivery carriers with improved targeting effect. Therefore, the multilayer thin films fabricated by the LbL technique are a promising candidate for an ideal drug delivery system and the development possibilities of this technology are infinite.

Original languageEnglish
Article number29
JournalBiomaterials Research
Volume22
DOIs
Publication statusPublished - 2018

Bibliographical note

Funding Information:
This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI14C-3266). Also, this research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017R1E1A1A01074343).

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Medicine (miscellaneous)
  • Biomaterials
  • Biomedical Engineering

Fingerprint Dive into the research topics of 'Layer-by-layer assembled polymeric thin films as prospective drug delivery carriers: Design and applications'. Together they form a unique fingerprint.

Cite this