Abstract
With the increase of available time series data, predicting their class labels has been one of the most important challenges in a wide range of disciplines. Recent studies on time series classification show that convolutional neural networks (CNN) achieved the state-of-the-art performance as a single classifier. In this work, pointing out that the global pooling layer that is usually adopted by existing CNN classifiers discards the temporal information of high-level features, we present a dynamic temporal pooling (DTP) technique that reduces the temporal size of hidden representations by aggregating the features at the segment-level. For the partition of a whole series into multiple segments, we utilize dynamic time warping (DTW) to align each time point in a temporal order with the prototypical features of the segments, which can be optimized simultaneously with the network parameters of CNN classifiers. The DTP layer combined with a fully-connected layer helps to extract further discriminative features considering their temporal position within an input time series. Extensive experiments on both univariate and multivariate time series datasets show that our proposed pooling significantly improves the classification performance.
Original language | English |
---|---|
Title of host publication | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
Publisher | Association for the Advancement of Artificial Intelligence |
Pages | 8288-8296 |
Number of pages | 9 |
ISBN (Electronic) | 9781713835974 |
Publication status | Published - 2021 |
Event | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online Duration: 2021 Feb 2 → 2021 Feb 9 |
Publication series
Name | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
---|---|
Volume | 9B |
Conference
Conference | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
---|---|
City | Virtual, Online |
Period | 21/2/2 → 21/2/9 |
Bibliographical note
Funding Information:This work was supported by the NRF grant funded by the MSIT (No. 2020R1A2B5B03097210), and the IITP grant funded by the MSIT (No. 2018-0-00584, 2019-0-01906).
Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
All Science Journal Classification (ASJC) codes
- Artificial Intelligence