Learning Multi-Task Correlation Particle Filters for Visual Tracking

Tianzhu Zhang, Changsheng Xu, Ming Hsuan Yang

Research output: Contribution to journalArticlepeer-review

134 Citations (Scopus)

Abstract

In this paper, we propose a multi-task correlation particle filter (MCPF) for robust visual tracking. We first present the multi-task correlation filter (MCF) that takes the interdependencies among different object parts and features into account to learn the correlation filters jointly. Next, the proposed MCPF is introduced to exploit and complement the strength of a MCF and a particle filter. Compared with existing tracking methods based on correlation filters and particle filters, the proposed MCPF enjoys several merits. First, it exploits the interdependencies among different features to derive the correlation filters jointly, and makes the learned filters complement and enhance each other to obtain consistent responses. Second, it handles partial occlusion via a part-based representation, and exploits the intrinsic relationship among local parts via spatial constraints to preserve object structure and learn the correlation filters jointly. Third, it effectively handles large scale variation via a sampling scheme by drawing particles at different scales for target object state estimation. Fourth, it shepherds the sampled particles toward the modes of the target state distribution via the MCF, and effectively covers object states well using fewer particles than conventional particle filters, thereby resulting in robust tracking performance and low computational cost. Extensive experimental results on four challenging benchmark datasets demonstrate that the proposed MCPF tracking algorithm performs favorably against the state-of-the-art methods.

Original languageEnglish
Article number8267285
Pages (from-to)365-378
Number of pages14
JournalIEEE transactions on pattern analysis and machine intelligence
Volume41
Issue number2
DOIs
Publication statusPublished - 2019 Feb 1

Bibliographical note

Funding Information:
This work was supported in part by the National Natural Science Foundation of China under Grant 61432019, 61532009, 61721004, 61572498, Key Research Program of Frontier Sciences, CAS, Grant NO. QYZDJ-SSW-JSC039, and Beijing Natural Science Foundation (4172062).

Publisher Copyright:
© 1979-2012 IEEE.

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition
  • Computational Theory and Mathematics
  • Artificial Intelligence
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Learning Multi-Task Correlation Particle Filters for Visual Tracking'. Together they form a unique fingerprint.

Cite this